Fuzzy modeling of coffee productivity under different irrigation depths, water deficit and temperature

Autores

  • Emmanuel Zullo Godinho Department Agronomy, Centro Universitário Sagrado Coração (UNISAGRADO), Bauru-SP, Brazil https://orcid.org/0000-0001-5281-6608
  • Fernando De Lima Caneppele Department Biosystems Engineering FZEA/USP, Universidade de São Paulo (USP), Pirassununga-SP, Brazil https://orcid.org/0000-0003-4498-8682
  • Luís Roberto Almeida Gabriel Filho Department of Management, Development and Technology FCE/UNESP, Universidade Estadual Paulista (UNESP), Tupã-SP, Brazil https://orcid.org/0000-0002-7269-2806
  • Camila Pires Cremasco Gabriel Department of Management, Development and Technology FCE/UNESP, Universidade Estadual Paulista (UNESP), Tupã-SP, Brazil https://orcid.org/0000-0003-2465-1361

DOI:

https://doi.org/10.18011/bioeng.2023.v17.1193

Palavras-chave:

Fuzzy logic, Irrigation, Water deficit, Temperature

Resumo

The coffee culture has great economic importance on the world stage, especially for Brazil. Considered one of the most traded commodities on the world's trading exchanges. Thus, the main objective of this study was to develop a system based on fuzzy rules to evaluate coffee productivity, using irrigation, soil water deficit and ambient temperature as the main production factors. The research was developed from searches of scientific data on the main variables for coffee production. The work was divided into two stages: the first in the scientific search for data collection and the second in the development of the fuzzy model. With this, it was parameterized that the input variables would be the temperature, the irrigation depth, and the water deficit of the soil and for the output variable the coffee productivity. Based on the model prediction, the fuzzy system showed which variable values are necessary for the best coffee productivity, by a set of rules involving the variation of water deficit (60%), temperature (30°C) and irrigation (300 mm), for a productivity of 24 sc ha-1. The performance of the fuzzy system was tested by comparing it with articles on the subject that relate coffee production with irrigation, water deficit and temperature of the environment and in almost all cases the model was efficient, reinforcing the assessment of the strength of the scheme, the analysis was extended to several scenarios relating the same three input variables.

Downloads

Não há dados estatísticos.

Referências

Arêdes, A. F. de, Pereira, M. W. G., & Santos, M. L. dos. (2010). A irrigação do cafezal como alternativa econômica ao produtor. Acta Scientiarium Agronomy, Maringá, 32(2), 193-200. https://doi.org/10.4025/actasciagron.v32i2.1624. DOI: https://doi.org/10.4025/actasciagron.v32i2.1624

Armoa Báez, M. S. et al. (2020). Balanço hídrico e produtividade da soja cultivada sob diferentes níveis de déficit hídrico no Sul do Brasil. Investigación Agraria, 22 (1), 3-12. https://doi.org/10.18004/investig.agrar.2020.junio.03-12. DOI: https://doi.org/10.18004/investig.agrar.2020.junio.03-12

Assar, W. et al. (2019). Assessing the agricultural drainage water with water quality indices in the El-Salam Canal Mega Project, Egypt. Water (Switzerland), 11(5), 1-21. https://doi.org/10.3390/w11051013. DOI: https://doi.org/10.3390/w11051013

Batista, L. A. et al. (2010). Anatomia foliar e potencial hídrico na tolerância de cultivares de café ao estresse hídrico. Revista Ciência Agronômica, 41(3), 475-481. https://doi.org/10.1590/S1806-66902010000300022. DOI: https://doi.org/10.1590/S1806-66902010000300022

Caneppele, F. D. L. et al. (2021). Aplicação da lógica fuzzy no desenvolvimento do morango no Oeste do Paraná. Revista Sodebras, 16(184), 6-9. https://doi.org/10.29367/issn.1809-3957.16.2021.184.06. DOI: https://doi.org/10.29367/issn.1809-3957.16.2021.184.06

Caneppele, F. D. L., & Seraphim, O. J. (2013). Madeireiras através da lógica fuzzy. Revista Energia na Agricultura, 28(2), 95-102. https://doi.org/10.17224/EnergAgric.2013v28n2p95-102. DOI: https://doi.org/10.17224/EnergAgric.2013v28n2p95-102

CONAB, Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: café, v.8, n.3 (2021) Brasília: Conab, 2021.

Fernandes, A. L. T. et al. Viabilidade técnica e econômica da irrigação localizada do cafeeiro, nas condições climáticas do planalto de Araxá, MG. Coffee Science, 11: 346-57, 2016. https://doi.org/10.1590/1983-21252020v33n121rc.

Garcia, F. H. S. et al. (2019). Análise fisiológica em mudas de cafeeiro com cercosporiose submetida a diferentes lâminas de irrigação. Summa Phytopathologica, Botucatu, 45(1), 83-88. https://doi.org/10.1590/0100-5405/185711. DOI: https://doi.org/10.1590/0100-5405/185711

Giusti, E., Marsili-Libelli, S. (2015). A Fuzzy Decision Support System for irrigation and water conservation in agriculture. Environmental Modelling & Software, 63, 73-86. https://doi.org/10.1016/j.envsoft.2014.09.020. DOI: https://doi.org/10.1016/j.envsoft.2014.09.020

Godinho, E. Z., Caneppele, F. D. L., & Gasparotto, H. V. (2021). Utilização da lógica fuzzy para otimizar aplicação de fertilizantes no rabanete. Revista Brasileira de Engenharia de Biossistemas, 15(2), 270-282. https://doi.org/10.18011/bioeng2021v15n2p270-282. DOI: https://doi.org/10.18011/bioeng2021v15n2p270-282

Godoy, F. O. de et al. (2020). Utilização da lógica fuzzy aplicada à energia solar. Cadernos de Ciência & Tecnologia, 37(2), e26663. http://dx.doi.org/10.35977/0104-1096.cct2020.v37.26663. DOI: https://doi.org/10.35977/0104-1096.cct2020.v37.26663

Lenzi, A., Marvasi, M., & Baldi, A. Agronomic practices to limit pre-and post-harvest contamination and proliferation of human pathogenic Enterobacteriaceae in vegetable produce. Food Control, 119, e107486. https://doi.org/10.1016/j.foodcont.2020.107486. DOI: https://doi.org/10.1016/j.foodcont.2020.107486

Moreira, P. et al. (2019). Produtividade e economia de fatores de produção na cafeicultura brasileira. Revista de Política Agrícola, 28(2), 6-21.

Ramachandra, T. V., Bharath, S., & Vinay, S. (2019). Visualisation of impacts due to the proposed developmental projects in the ecológically fragile regions-Kodagu district, Karnataka. Progress in Disaster Science, 3, e100038. DOI: https://doi.org/10.1016/j.pdisas.2019.100038

Ren C, Yang J, & Zhang H (2019). Um modelo de programação fracionária inexata para alocação ideal de recursos hídricos de irrigação sob múltiplas incertezas. PLoS ONE, 14(6): e0217783. https://doi.org/10.1371/journal.pone.0217783. DOI: https://doi.org/10.1371/journal.pone.0217783

Rodrigues, R. N. et al. (2022). Soil enzymatic activity under coffee cultivation with different water regimes associated to liming and intercropped brachiaria. Ciência Rural, Santa Maria, 52(3), e20200532. https://doi.org/10.1590/0103-8478cr20200532. DOI: https://doi.org/10.1590/0103-8478cr20200532

Ronchi, C. P., & Miranda, F. R. (2020). Flowering percentage in arabica coffee crops depends on the water deficit level applied during the pre - flowering stage. Revista Caatinga, Mossoró, 33(1), 195-204. https://doi.org/10.1590/1983-21252020v33n121rc. DOI: https://doi.org/10.1590/1983-21252020v33n121rc

Silva, A. H. et al. (2006). Produtividade de cultivares de café (Coffea arabica L.) sob espaçamentos adensados. Revista Ceres, Viçosa, 53(308). 539-547.

Silva, A. C. da et al. (2011). Evapotranspiração e coeficiente de cultura do cafeeiro irrigado por pivô central. Revista Brasileira de Engenharia Agrícola Ambiental, 15(2), 1215-1221. https://doi.org/10.1590/S1415-43662011001200001. DOI: https://doi.org/10.1590/S1415-43662011001200001

Silva, B. M. et al. (2019). Soil moisture associated with least limiting water range, leaf water potential, initial growth and yield of coffee as affected by soil management system. Soil and Tillage Research, 189, 36-43. https://doi.org/10.1016/j.still.2018.12.016. DOI: https://doi.org/10.1016/j.still.2018.12.016

Tavares, L. C. et al. (2013). Desempenho de sementes de soja sob deficiência hídrica: Rendimento e qualidade fisiológica da geração F1. Ciência Rural, 43(8), 1357-1363. https://doi.org/10.1590/S0103-84782013000800003. DOI: https://doi.org/10.1590/S0103-84782013000800003

Valadares, S. V. et al. (2013). Produtividade e bienalidade da produção de cafezais adensados, sob diferentes doses de N e K. Pesquisa Agropecuária Brasileira, 48(3), 296-303. https://doi.org/10.1590/S0100-204X2013000300008. DOI: https://doi.org/10.1590/S0100-204X2013000300008

Wakeyo, M. B.; & Gardebroek, C. (2017). Share of irrigated land and farm size in rainwater harvesting irrigation in Ethiopia. Journal of Arid Environments, 139, 85-94. https://doi.org/10.1016/j.jaridenv.2017.01.002. DOI: https://doi.org/10.1016/j.jaridenv.2017.01.002

Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

Downloads

Publicado

14-09-2023

Como Citar

Zullo Godinho, E., De Lima Caneppele, F., Almeida Gabriel Filho, L. R., & Pires Cremasco Gabriel, C. (2023). Fuzzy modeling of coffee productivity under different irrigation depths, water deficit and temperature. Revista Brasileira De Engenharia De Biossistemas, 17. https://doi.org/10.18011/bioeng.2023.v17.1193

Edição

Seção

Regular Section