• César de Oliveira Ferreira Silva Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Ciências Agronômicas, Botucatu, SP, Brasil https://orcid.org/0000-0002-5152-6497
  • Pedro Henrique Jandreice Magnoni Universidade Estadual Paulista "Júlio de Mesquita Filho". Botucatu, SP, Brasil. https://orcid.org/0000-0003-2423-4453
  • Rodrigo Lilla Manzione Universidade Estadual Paulista "Júlio de Mesquita Filho". Tupã, SP, Brasil. https://orcid.org/0000-0002-0754-2641




Agrometeorology, Hydrology, Google Earth Engine, Modeling, Automation


The objective of this review article was compiling the theoretical and technological aspects of remote sensing-based evapotranspiration (ET) modeling. We surveyed the thermohydrological concepts that support the ET phenomenon, such as soil energy fluxes ("thermo") and hydrological balance. We also present the main variants of the ET concept. Models based on remote sensing are focused on the actual ET. We survey the most disseminated models applied to satellite imagery (to be implemented by the researcher) and present their assumptions, limitations and opportunities.Finally, we surveyed ready-made actual ET databases (available on Google Earth Engine - GEE), and for these we developed interactive panels for data extraction.  With these panels it is possible to easily extract actual ET time series and perform subsequent calibrations with field data.


Download data is not yet available.

Author Biography

César de Oliveira Ferreira Silva, Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Ciências Agronômicas, Botucatu, SP, Brasil

Mestre em Agronomia (Irrigação e Drenagem) pela Faculdade de Ciências Agronômicas da Universidade Estadual Paulista “Julio de Mesquita Filho” - UNESP, Engenheiro Ambiental pela Universidade Estadual Paulista “Julio de Mesquita Filho” - UNESP.


ABATZOGLOU, J.T.; S.Z. DOBROWSKI, S.A.; PARKS, K.C. HEGEWISCH. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5: 170191, 2018.

ADORNO, B. V.; BARREIRA, S.; FERREIRA, M. E.; VELOSO, G. A.. Influence of native and exotic tree plantations on biophysical indicators in the Brazilian Savanna. Pesquisa Agropecuária Tropical, 51: e65815, 2021.

ALLEN R.G., TASUMI M., TREZZA R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) model. Journal of Irrigation and Drainage Engineering, 133: 380–394, 2005.

ALLEN, R. G.; MORTON, C.; KAMBLE, B.; KILIC, A.; HUNTINGTON, J.; THAU, D.; GORELICK, S.; ERICKSON, T.; MOORE, R.; TREZZA, R.; RATCLIFFE, I.; ROBISON, C. EEFlux: A Landsat-based Evapotranspiration mapping tool on the Google Earth Engine. Emerging Technologies for Sustainable Irrigation -A Tribute to the Career of Terry Howell, Sr. Conference Proceedings. Anais... In: 2015 ASABE / IA IRRIGATION SYMPOSIUM. American Society of Agricultural and Biological Engineers, 10 nov. 2015. Disponível em: <http://elibrary.asabe.org/abstract.asp?aid=46446&t=3&dabs=Y&redir=&redirType=>. Acesso em: 01 ago. 2021

ALLEN, R. G.; PEREIRA, L. S.; RAES, D.; SMITH, M. Crop evapotranspiration: guidelines for computing crop water requirements. FAO, Irrigation and Drainage Paper, 56. Roma, 1998. 300p.

ALLEN, R.G., M. TASUMI, R. TRESSA. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Applications. Journal of Irrigation and Drainage Engineering, 133(4): 395–406, 2007a.

ALLEN, R.G., M. TASUMI, R. TREZZA. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering, 133(4): 380–394, 2007b.

AGÊNCIA NACIONAL DE ÁGUAS (ANA). Estimativas de evapotranspiração real por sensoriamento remoto no Brasil. 2020. Disponível em: <http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/central-de-publicacoes/23-estimativas-de-evapotranspiracao-real-por-sensoriamento-remoto>. Acesso em: 1 ago. 2021.

ARAUJO, L. M.; TEIXEIRA, A. H. C.; BASSOI, L. H. Evapotranspiration and biomass modelling in the Pontal Sul Irrigation Scheme. International Journal Remote Sensing, 1:1–13, 2019.

BASTIAANSSEN, W. G. M.; MENENTI, M.; FEDDES, R. A.; HOLTSLAG, A. M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212–213(1-4): 198-212. 1998a.

BASTIAANSSEN, W. G. M.; PELGRUM, H.; WANG, J.; MORENO, J. F.; ROERINK, G. J.; WAL, T. V. A remote sensing surface energy balance algorithm for land (SEBAL). 2. Validation. Journal of Hydrology, 212–213(1-4): 213-229. 1998b.

BEAUDOING, H.; RODELL, M.; NASA/GSFC/HSL. GLDAS Noah Land Surface Model L4 3 hourly 0.25 x 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2020a. Disponível em:< https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/summary>. Acesso em: 01 ago. 2021.

CHRISTOFOLETTI, A. Modelagem de Sistemas Ambientais. São Paulo, SP:

Edgard Blücher, 1999. 236 p.

COAGUILA, D. N. ; HERNANDEZ, F. B. T. ; TEIXEIRA, A. H. DE C. ; FRANCO, R. A. M.; LEIVAS, J. F. Water productivity using SAFER - Simple Algorithm for Evapotranspiration Retrieving in watershed. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(7): 524-529, 2017.

EBITA, A.; KOBAYASHI, S.; OTA, Y.; MORIYA, M.; KUMABE, R.; ONOGI, K.; HARADA, Y.; YASUI, S.; MIYAOKA, K.; TAKAHASHI, K.; KAMAHORI, H.; KOBAYASHI, C.; ENDO, H.; SOMA, M.; OIKAWA, Y.; ISHIMIZU, T. Japanese 55-year reanalysis “JRA-55”: an interim report. Sola, 7: 149-152, 2011.

FILGUEIRAS, R.; MANTOVANI, E. C. .; ALTHOFF, D.; RIBEIRO, R. B.; VENANCIO, L. P.; SANTOS, R. A. Dynamics of actual crop evapotranspiration based in the comparative analysis of SEBAL and METRIC-EEFLUX. Irriga, 1(1): 72–80, 2019.

FIORIO, P. R.; COELHO, R. D.; BARROS, P. P. S.; BONILLA, M. Z.; GADY, A. P. B. Comportamento espectral de folhas da cana-de-açúcar na presença de déficit hídrico. Irriga. 23(3): 609-621, 2018.

HARRIS, I.; OSBORN, T. J.; JONES, P.; LISTER, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific data, 7(1): 1-18, 2020.

HEALY, R. W. Estimating groundwater recharge. Cambridge University Press, 2010. 245 p.

HEALY, R. W.; COOK, P. G. Using groundwater levels to estimate recharge. Hydrogeology Journal, 10(1): 91-109, 2002.

HERNANDEZ, F. B. T.; TEIXEIRA, A. H. C.; NEALE, C. M. U.; TAGHVAEIAN, S. Determining large scale actual evapotranspiration using agro-meteorological and remote sensing data in the northwest of Sao Paulo state, Brazil. Acta Horticulturae, 1038:263–270, 2014.

JAWAK, S.D.; DEVLIYAL, P.; LUIS, A.J. A Comprehensive Review on Pixel Oriented and Object Oriented Methods for Information Extraction from Remotely Sensed Satellite Images with a Special Emphasis on Cryospheric Applications. Advances in Remote Sensing, 4: 177–195, 2015.

JENSEN, J. R. Remote sensing of vegetation. In. _______. Remote sensing of the environment, an earth resource perspective. Upper Saddle River, NJ: Prentice Hall, 2000. p. 333-377.

KING, A.C.; RAIBER, M.; COX, M.E.; CENDÓN, D.I. Comparison of groundwater recharge estimation techniques in an alluvial aquifer system with an intermittent/ephemeral stream (Queensland, Australia). Hydrogeology Journal, 5(1): 1-19, 2017.

MAGNONI, P.H.J.; SILVA, C.O.F.; MANZIONE, R.L. Groundwater recharge and water table levels modelling using remotely sensed data and cloud-computing. Sustainable Water Resources Management, 6(6): 1-16, 2020.

MCNALLY A.; NASA/GSFC/HSL. FLDAS Noah Land Surface Model L4 Global Monthly 0.1 x 0.1 degree (MERRA-2 and CHIRPS). Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2018. Disponível em:<https://disc.gsfc.nasa.gov/datasets/FLDAS_NOAH01_C_GL_M_001/summary>. Acesso em: 1 ago. 2020.

MCNALLY, A.; ARSENAULT, K.; KUMAR, S.; SHUKLA, S.; PETERSON, P.; WANG, S.; FUNK, C.; PETERS-LIDARD, C. D.; VERDIN, J. P. A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific data, 4(1): 1-19, 2017.

MINHONI, R. T. A.; PINHEIRO, M. P. M. A.; FILGUEIRAS, R.; ZIMBACK, C. R. L. Sensoriamento remoto aplicado ao monitoramento de macrófitas aquáticas no Reservatório de Barra Bonita, SP. Irriga, 22(2): 330–342, 2017.

MONTEITH, J.L. Evaporation and environment. Symposium of the Society for Experimental Biology, 19: 205-234, 1965.

MU, Q.; ZHAO, M.; RUNNING, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8): 1781-1800, 2011.

MU, Q.; HEINSCH, F.A.; ZHAO, M.; RUNNING, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111: 519-536, 2007.

NASA. The Landsat Program. NASA, 2019a. Disponível em: <http://landsat.gsfc.nasa.gov/>. Acesso em: 1 ago. 2021.

NASA. The MODIA Program. NASA, 2019a. Disponível em: <https://modis.gsfc.nasa.gov/>. Acesso em: 1 ago. 2021.

ELNASHAR, A..; WANG, L.; WU, B.; ZHU, W.; ZENG, H. Synthesis of global actual evapotranspiration from 1982 to 2019. Hydrology and Earth Scientifical Data, 13: 447–480, 2021.

RAMOELO, A.; MAJOZI, N.; MATHIEU, R.; JOVANOVIC, N.; NICKLESS, A.; DZIKITI, S. Validation of Global Evapotranspiration Product (MOD16) using Flux Tower Data in the African Savanna, South Africa. Remote Sensing, 6: 7406–7423, 2014.

ONOGI, K.; TSUTSUI, J.; KOIDE, H.; SAKAMOTO, M.; KOBAYASHI, S.; HATSUSHIKA, H.; MATSUMOTO, T.; YAMAZAKI, N.; KAMAHORI, H.; TAKAHASHI, K.; KADOKURA, S.; WADA, K.; KATO, K.; OYAMA, R.; OSE, T.; MANNOJI, N.; TAIRA, R. The JRA-25 reanalysis. Journal of the Meteorological Society of Japan. Ser. II, 85(3): 369-432, 2007.

PEIXOTO, D. W. B.; GUASSELLI, L. A.; PEREIRA FILHO, W. Estimativa de concentração de sedimentos em suspensão a partir de imagens Landsat 8 em PCHs no rio Ivaí-RS. Revista de Geociências - UNESP, 37(1): 147 - 154, 2018.

POLLO, R. A.; SILVA, C. O. F.; CARDOSO, L. G.; LESSA, L. G. F. Fatores de perturbação identificados em área de proteção ambiental Corumbataí-Botucatu-Tejupá, perímetro Botucatu, estado de São Paulo. Raega-O Espaço Geográfico em Análise, 46(1): 204-214, 2019.

REYNOLDS, C. A.; JACKSON, T. J.; RAWLS, W. J. Estimating soil water‐holding capacities by linking the Food and Agriculture Organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resources Research, 36(12): 3653-3662, 2000.

RODELL, M.; HOUSER, P. R.; JAMBOR, U.; GOTTSCHALCK, J.; MITCHELL, K.; MENG, C. –J.; ARSENAULT, K.; COSGROVE, B.; RADAKOVICH, J.; BOSILOVICH, M.; ENTIN, J. K.; WALKER, J. P.; LOHMANN, D.; TOLL, D. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381-394, 2004.

RODELL, M. GLDAS: Project Goals. NASA, 2020. Disponível em: <https://ldas.gsfc.nasa.gov/gldas>. Acesso em: 1 ago. 2021.

SANTOS, J. E. O.; CUNHA, F. F.; FILGUEIRAS, R,.; SILVA, G.H.; TEIXEIRA, A. H. C.; SILVA, F. C. S.; SEDIYAMA, G. C. Performance of SAFER evapotranspiration using missing meteorological data. Agricultural Water Management, 233:1–8, 2020.

SENAY, G.B.; BOHMS, S.; SINGH, R.K.; GOWDA, P.H.; VELPURI, N. M. et al. Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach. Journal of the American Water Resources Association, 49: 577- 591, 2013.

SENAY, G.B.; FRIEDRICHS, M.; SINGH, R.K.; VELPURI, N.M. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River basin. Remote Sensing of Environment, 185: 171-185, 2016.

SENAY, G. B. Landsat-based illustrative implementation of Satellite Psychrometry for ET Mapping. U.S. Geological Survey data release, 2018. Disponível em: <https://www.usgs.gov/core-science-systems/nli/landsat/landsat-provisional-actual-evapotranspiration/>. Acesso em: 1 ago. 2021.

SHAW, G.A.; BURKE, H.-H.K. Spectral Imaging for Remote Sensing. Linc. Lab. J. 2003, 1, 3–28.

SHIA, C.; WANGA, L. Incorporating spatial information in spectral unmixing: A review. Remote Sensing of Environment, 149: 70–87, 2014.

SHIMABUKURO, Y.E.; SMITH, J.A. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data. IEEE Transactions on Geoscience and Remote Sensing, 29(1): 16-20, 1991.

SILVA, C. O. F.; MANZIONE, R. L.; ALBUQUERQUE FILHO, J. L. Large-scale spatial modeling of crop coefficient and biomass production in agroecosystems in southeast Brazil. Horticulturae, 4(4): 1–20, 2018a.

SILVA, C. O. F.; MANZIONE, R. L.; TEIXEIRA, A. H. C.. Modelagem espacial da evapotranspiração e produtividade hídrica na porção paulista do afloramento do aquífero Guarani entre 2013 e 2015. Holos Environment, 18(2): 126-140, 2018b

SILVA, C. O. F.; TEIXEIRA, A. H. de C.; MANZIONE, R. L. Agriwater: An R package for spatial modelling of energy balance and actual evapotranspiration using satellite images and agrometeorological data. Environmental Modelling & Software, 120: 104497, 2019a.

SILVA, C. O. F.; MANZIONE, R. L.; ALBUQUERQUE FILHO, J. L. Combining remotely sensed actual evapotranspiration and GIS analysis for groundwater level modeling. Environmental Earth Sciences, 78(15): 462, 2019b.

SILVA, C. O. F.; MANZIONE, R. L.; ALBUQUERQUE FILHO, J. L. Comparison of SAFER and METRIC-based actual evapotranspiration models in a subtropical area of BRAZIL. Irriga, 1(1): 48–55, 2019c.

SILVA, C. O. F.; MANZIONE, R. L. Dinâmica do uso e ocupação da terra na área de proteção ambiental “cuesta” – perímetro Botucatu, SP entre 2000 e 2016. GEOUSP Espaço e Tempo, 23(1): 198-214, 2019d.

SILVA, F.; PESTANA, A.; MARTINS, L. Sensoriamento remoto para detecção de queimadas no cerrado maranhense: uma aplicação no Parque Estadual do Mirador. Revista de Geografia Acadêmica, 13(2): 90-105, 2019.

TATEISH, R., AHN, C.H., Mapping evapotranspiration and water balance for global land surfaces. ISPRS Journal of Photogrametry & Remote Sensing. 51: 209–215, 1996.

TEIXEIRA, A.H, C, BASTIAANSSEN, W.G.M., AHMAD, M.D., MOURA, M.S.B., BOS, M.G. Analysis of energy fluxes and vegetation-atmosphere parameters in irrigated and natural ecosystems of semi-arid Brazil. Journal of Hydrology, 362: 110-127, 2008.

TEIXEIRA, A.H.C. Determining regional actual evapotranspiration of irrigated and natural vegetation in the São Francisco river basin (Brazil) using remote sensing an Penman-Monteith equation. Remote Sensing, 2: 1287-1319, 2010.

TEIXEIRA, A. H. C.; SCHERER-WARREN, M.; HERNANDEZ, F.B.T.; ANDRADE, R.G.; LEIVAS, J.F. Large-Scale Water Productivity Assessments with MODIS Images in a Changing Semi-Arid Environment: A Brazilian Case Study. Remote Sensing, 5: 5783-5804, 2013.


VICTORIA, D. DE C.; GALDINO, S. Use of MODIS images to quantify the radiation and energy balances in the Brazilian Pantanal. Remote Sensing, 7: 14597-14619, 2015a.

TEIXEIRA, A.H. de C., HERNANDEZ, F.B.T., ANDRADE, R.G., LEIVAS, J.F., VICTORIA, D. de C. BOLFE, E.L. Corn Water Variables Assessments from Earth Observation Data in the São Paulo State, Southeast Brazil. Journal of Hydraulic Engineering, 1: 1-11, 2015b.

TEIXEIRA, A. H. C.; LEIVAS, J. F.; RONQUIM, C. C.; SILVA, G. B.; VICTORIA, D. de C. Energy balances in sugar cane, coffee and natural vegetation in the northeastern side of the São Paulo state, Brazil. Proceedings of SPIE, 9998: 99980M-1 - 99980M-16, 2016.

TEIXEIRA, A. H. C.; REIS, J. B. R. S.; LEIVAS, J. F.; SILVA, G. B.; STRUIVING, T. B. Componentes da produtividade da água modelados por sensoriamento remoto em limoeiros irrigados de Minas Gerais. Agrometeoros, 25: 237-247, 2017.

THORNTHWAITE, C. W. An approach toward a rational classification of climate. Geographical Review, 38: 5 5-94, 1948.

TUCCI, C. E. M.; SILVEIRA A. L. L.; Hidrologia: ciência e aplicação. Porto Alegre, 4º Ed. UFRGD/ABRH, 2015. 944 p.

USGS - United States Geological Survey. The Landsat Program. Washington, DC, 2013. Disponível em: <http://landsat.gsfc.nasa.gov/>. Acesso: 1 ago. 2021.

VAN DER WERFF, H.; VAN DER MEER, F. Sentinel-2 for Mapping Iron Absorption Feature Parameters. Remote Sensing. 7: 12635–12653, 2015.

VERDIN, K.L., GREENLEE, S.K., 1996. Development of continental scale digital elevation models and extraction of hydrographic features. In: Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, New Mexico, 1996.

WANG-ERLANDSSON, L., BASTIAANSSEN, W. G. M., GAO, H., JÄGERMEYR, J., SENAY, G. B., VAN DIJK, A. I. J. M., GUERSCHMAN, J. P., KEYS, P. W., GORDON, L. J., AND SAVENIJE, H. H. G.: Global root zone storage capacity from satellite-based evaporation. Hydrology and Earth System Sciences, 20: 1459–1481, 2016.

WESTERHOFF, R. S. Using uncertainty of Penman and Penman–Monteith methods in combined satellite and ground-based evapotranspiration estimates. Remote Sensing of Environment, 169: 102-112, 2015.

WORDCLIM. Downscaling future and past climate data from GCMs. Disponível em: https://www.worldclim.org/data/downscaling.html. Acesso em: 1 ago. 2021.



How to Cite

DE OLIVEIRA FERREIRA SILVA, C.; JANDREICE MAGNONI , P. H. .; LILLA MANZIONE, R. . ORBITAL REMOTE SENSING FOR EVAPOTRANSPIRATION MODELING: THEORETICAL OVERVIEW AND APPLICATIONS IN CLOUD COMPUTING. Revista Brasileira de Engenharia de Biossistemas, Tupã, São Paulo, Brazil, v. 15, n. 3, p. 425–468, 2021. DOI: 10.18011/bioeng2021v15n3p425-468. Disponível em: https://seer.tupa.unesp.br/index.php/BIOENG/article/view/1022. Acesso em: 1 dec. 2021.