Relationships between leaf water potential and soil water potential in grasses subjected to water stress
DOI:
https://doi.org/10.18011/bioeng.2022.v16.1091Palavras-chave:
Water relations, Soil depth, Soil water availabilityResumo
For grasses and other crops in general, soil water potential has been widely studied to determine if there is a deficit or excess of water content in the soil. However, the plant water absorption process is not only modulated by soil water potential but also by the combination of meteorological, soil depth, and crop canopy factors, which could be elucidated through water relations responses. The objective of this work was to compare the water relations of grass species established in different soil depths and subjected to water stress. Santo Agostinho (Stenotaphrum secundatum), Esmeralda (Zoysia japonica), Tanzania (Panicum maximum) and Tifton 85 (Cynodon spp.) were used in this trial. The four species of grasses were tested in four different soil rooting depths: 10, 20, 30 and 40 cm. The grasses were irrigated at soil moisture field capacity level, until the time of imposing the water stress period. Soil depth had a direct influence on leaf water potential and soil water potential. Moreover, correlation coefficients are higher in deeper soil profiles. The strongest correlations between leaf water potential and soil water potential were found in the deeper soil depth treatments. Therefore, for the soil depth treatment of 40 cm, the average R² for the four species was 0.55, the highest being 0.70 in Tanzania grass. It is possible to relate leaf water potential and soil water potential independently of the grass species used or the depth of soil available to the roots, which would allow the creation of new irrigation management strategies.
Downloads
Referências
Brady, R. A., Powers, W. L., Stone, L. R., & Goltz, S. M. (1974). Relation of Soybean Leaf Water Potential to Soil Water Potential 1. Agronomy Journal, 66(6), 795-798. https://doi.org/10.2134/agronj1974.00021962006600060023x
Bucci, S. J., Scholz, F. G., Goldstein, G., Meinzer, F. C., & Arce, M. E. (2009). Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species. Oecologia, 160(4), 631-641. https://doi.org/10.1007/s00442-009-1331-z
Cardoso, E. J. B. N., Vasconcellos, R. L. F., Bini, D., Miyauchi, M. Y. H., Santos, C. A. D., Alves, P. R. L., ... & Nogueira, M. A. (2013). Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health?. Scientia Agricola, 70, 274-289. https://doi.org/10.1590/S0103-90162013000400009
Carlesso, R. (1995). Absorção de água pelas plantas: água disponível versus extraível e a produtividade das culturas. Ciência Rural, 25, 183-188. https://doi.org/10.1590/S0103-84781995000100035
Chaves, S. W. P., Coelho, R. D., Costa, J. O., & Tapparo, S. A. (2021). Micrometeorological modeling and water consumption of tabasco pepper cultivated under greenhouse conditions. Italian Journal of Agrometeorology, (1), 21-36. https://doi.org/10.36253/ijam-1221
Chaves, S. W. P., Coelho, R. D., Costa, J. O., & Tapparo, S. A. (2022). Vegetative and productive responses of tabasco pepper to fertigation and plastic mulching. Scientia Agricola, 79. https://doi.org/10.1590/1678-992X-2021-0084
Coolong, T., Snyder, J., Warner, R., Strang, J., & Surendran, S. (2012). The relationship between soil water potential, environmental factors, and plant moisture status for poblano pepper grown using tensiometer-scheduled irrigation. International journal of vegetable science, 18(2), 137-152. https://doi.org/10.1080/19315260.2011.591483
Costa, J. O., Coelho, R. D., Barros, T. H. S., Fraga Junior, E. F., & Fernandes, A. L. T. (2018). Physiological responses of coffee tree under different irrigation levels. Engenharia agrícola, 38, 648-656. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n5p648-656/2018
Costa, J. O., Coelho, R. D., Barros, T. H. S., Fraga Junior, E. F., & Fernandes, A. L. T. (2019). Leaf area index and radiation extinction coefficient of a coffee canopy under variable drip irrigation levels. Acta Scientiarum. Agronomy, 41. https://doi.org/10.4025/actasciagron.v41i1.42703
Costa, J. O., Coelho, R. D., Barros, T. H. S., Fraga Junior, E. F., & Fernandes, A. L. T. (2020a). Canopy thermal response to water deficit of coffee plants under drip irrigation. Irrigation and drainage, 69(3), 472-482. https://doi.org/10.1002/ird.2429
Costa, J. O., Coelho, R. D., Barros, T. H. S., Fraga Junior, E. F., & Fernandes, A. L. T. (2020b). Tensiometria aplicada na estimativa do consumo hídrico do cafeeiro irrigado por gotejamento. Revista Geama, 6(2), 17-24.
de Melo, M. L. A., & van Lier, Q. D. J. (2021). Revisiting the Feddes reduction function for modeling root water uptake and crop transpiration. Journal of Hydrology, 603, 126952. https://doi.org/10.1016/j.jhydrol.2021.126952
Donovan, L., Linton, M., & Richards, J. (2001). Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia, 129(3), 328-335. https://doi.org/10.1007/s004420100738
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. 3.ed. Brasília: Embrapa Informação Tecnológica, 2013. 353p.
Hura, T., Grzesiak, S., Hura, K., Thiemt, E., Tokarz, K., & Wędzony, M. (2007). Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Annals of botany, 100(4), 767-775. https://doi.org/10.1093/aob/mcm162
Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R., & Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology, 11(1), 100-105.
Kang, S., Hao, X., Du, T., Tong, L., Su, X., Lu, H., ... & Ding, R. (2017). Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agricultural Water Management, 179, 5-17. https://doi.org/10.1016/j.agwat.2016.05.007
Kørup, K., Laerke, P. E., Baadsgaard, H., Andersen, M. N., Kristensen, K., Muennich, C., ... & Jørgensen, U. (2018). Biomass production and water use efficiency in perennial grasses during and after drought stress. Gcb Bioenergy, 10, 12-27. https://doi.org/10.1111/gcbb.12464
Medrano, H., Tomás, M., Martorell, S., Flexas, J., Hernández, E., Rosselló, J., ... & Bota, J. (2015). From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. The Crop Journal, 3, 220-228. https://doi.org/10.1016/j.cj.2015.04.002
Miller, G. L., & McCarty, L. B. (2001). Water relations and rooting characteristics of three Stenotaphrum secundatum turf cultivars grown under water deficit conditions. International Turfgrass Society Research Journal, 9, 323-327.
Mwendia, S. W., Yunusa, I. A., Sindel, B. M., Whalley, R. D., & Kariuki, I. W. (2017). Assessment of Napier grass accessions in lowland and highland tropical environments of East Africa: water stress indices, water use and water use efficiency. Journal of the Science of Food and Agriculture, 97, 1953-1961. https://doi.org/10.1002/jsfa.8004
Pacheco, L. P., Monteiro, M., de Sousa, M., Petter, F. A., Nóbrega, J. C. A., & SANTOS, A. S. D. (2017). Biomass and nutrient cycling by cover crops in brazilian cerrado in the state of Piauí. Revista Caatinga, 30, 13-23. https://doi.org/10.1590/1983-21252017v30n102rc
Peek, M. S., Leffler, A. J., Hipps, L., Ivans, S., Ryel, R. J., & Caldwell, M. M. (2006). Root turnover and relocation in the soil profile in response to seasonal soil water variation in a natural stand of Utah juniper (Juniperus osteosperma). Tree physiology, 26(11), 1469-1476. https://doi.org/10.1093/treephys/26.11.1469
Quiloango-Chimarro, C., Coelho, R. D., Costa, J. O., & Gomez-Arrieta, R. (2021). Crop water stress index for predicting yield loss in common bean. Irriga, 1(4), 687-695. https://doi.org/10.15809/irriga.2021v1n4p687-695
Tapparo, S. A., Coelho, R. D., Costa, J. O., & Chaves, S. W. P. (2019). Growth and establishment of irrigated lawns under fixed management conditions. Scientia Horticulturae, 256, 108580. https://doi.org/10.1016/j.scienta.2019.108580
Wichelns, D., & Qadir, M. (2015). Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agricultural Water Management, 157, 31-38. https://doi.org/10.1016/j.agwat.2014.08.016
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Revista Brasileira de Engenharia de Biossistemas
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.