Relationships between leaf water potential and soil water potential in grasses subjected to water stress

Autores

  • Sergio André Tapparo Federal Institute of Mato Grosso do Sul - IFMS, Ponta Porã, MS, Brazil. https://orcid.org/0000-0002-8538-4060
  • Rubens Duarte Coelho Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil. https://orcid.org/0000-0002-0472-8301
  • Jéfferson Costa Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil. https://orcid.org/0000-0002-5387-7880
  • Sérgio Weine Paulino Chaves Departament of Agronomic and Forestry Sciences, Federal Rural University of the Semi-arid Region - UFERSA, Mossoró, RN, Brazil. https://orcid.org/0000-0003-0110-420X
  • Carlos Alberto Quiloango-Chimarro Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil. https://orcid.org/0000-0002-2649-8105
  • Everton dos Santos de Oliveira Federal Institute of Mato Grosso do Sul - IFMS, Ponta Porã, MS, Brazil.Federal Institute of Mato Grosso do Sul - IFMS, Ponta Porã, MS, Brazil. https://orcid.org/0000-0002-6182-6776

DOI:

https://doi.org/10.18011/bioeng.2022.v16.1091

Palavras-chave:

Water relations, Soil depth, Soil water availability

Resumo

For grasses and other crops in general, soil water potential has been widely studied to determine if there is a deficit or excess of water content in the soil. However, the plant water absorption process is not only modulated by soil water potential but also by the combination of meteorological, soil depth, and crop canopy factors, which could be elucidated through water relations responses. The objective of this work was to compare the water relations of grass species established in different soil depths and subjected to water stress. Santo Agostinho (Stenotaphrum secundatum), Esmeralda (Zoysia japonica), Tanzania (Panicum maximum) and Tifton 85 (Cynodon spp.) were used in this trial. The four species of grasses were tested in four different soil rooting depths: 10, 20, 30 and 40 cm. The grasses were irrigated at soil moisture field capacity level, until the time of imposing the water stress period. Soil depth had a direct influence on leaf water potential and soil water potential. Moreover, correlation coefficients are higher in deeper soil profiles. The strongest correlations between leaf water potential and soil water potential were found in the deeper soil depth treatments. Therefore, for the soil depth treatment of 40 cm, the average R² for the four species was 0.55, the highest being 0.70 in Tanzania grass. It is possible to relate leaf water potential and soil water potential independently of the grass species used or the depth of soil available to the roots, which would allow the creation of new irrigation management strategies.

Downloads

Não há dados estatísticos.

Referências

Brady, R. A., Powers, W. L., Stone, L. R., & Goltz, S. M. (1974). Relation of Soybean Leaf Water Potential to Soil Water Potential 1. Agronomy Journal, 66(6), 795-798. https://doi.org/10.2134/agronj1974.00021962006600060023x

Bucci, S. J., Scholz, F. G., Goldstein, G., Meinzer, F. C., & Arce, M. E. (2009). Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species. Oecologia, 160(4), 631-641. https://doi.org/10.1007/s00442-009-1331-z

Cardoso, E. J. B. N., Vasconcellos, R. L. F., Bini, D., Miyauchi, M. Y. H., Santos, C. A. D., Alves, P. R. L., ... & Nogueira, M. A. (2013). Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health?. Scientia Agricola, 70, 274-289. https://doi.org/10.1590/S0103-90162013000400009

Carlesso, R. (1995). Absorção de água pelas plantas: água disponível versus extraível e a produtividade das culturas. Ciência Rural, 25, 183-188. https://doi.org/10.1590/S0103-84781995000100035

Chaves, S. W. P., Coelho, R. D., Costa, J. O., & Tapparo, S. A. (2021). Micrometeorological modeling and water consumption of tabasco pepper cultivated under greenhouse conditions. Italian Journal of Agrometeorology, (1), 21-36. https://doi.org/10.36253/ijam-1221

Chaves, S. W. P., Coelho, R. D., Costa, J. O., & Tapparo, S. A. (2022). Vegetative and productive responses of tabasco pepper to fertigation and plastic mulching. Scientia Agricola, 79. https://doi.org/10.1590/1678-992X-2021-0084

Coolong, T., Snyder, J., Warner, R., Strang, J., & Surendran, S. (2012). The relationship between soil water potential, environmental factors, and plant moisture status for poblano pepper grown using tensiometer-scheduled irrigation. International journal of vegetable science, 18(2), 137-152. https://doi.org/10.1080/19315260.2011.591483

Costa, J. O., Coelho, R. D., Barros, T. H. S., Fraga Junior, E. F., & Fernandes, A. L. T. (2018). Physiological responses of coffee tree under different irrigation levels. Engenharia agrícola, 38, 648-656. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n5p648-656/2018

Costa, J. O., Coelho, R. D., Barros, T. H. S., Fraga Junior, E. F., & Fernandes, A. L. T. (2019). Leaf area index and radiation extinction coefficient of a coffee canopy under variable drip irrigation levels. Acta Scientiarum. Agronomy, 41. https://doi.org/10.4025/actasciagron.v41i1.42703

Costa, J. O., Coelho, R. D., Barros, T. H. S., Fraga Junior, E. F., & Fernandes, A. L. T. (2020a). Canopy thermal response to water deficit of coffee plants under drip irrigation. Irrigation and drainage, 69(3), 472-482. https://doi.org/10.1002/ird.2429

Costa, J. O., Coelho, R. D., Barros, T. H. S., Fraga Junior, E. F., & Fernandes, A. L. T. (2020b). Tensiometria aplicada na estimativa do consumo hídrico do cafeeiro irrigado por gotejamento. Revista Geama, 6(2), 17-24.

de Melo, M. L. A., & van Lier, Q. D. J. (2021). Revisiting the Feddes reduction function for modeling root water uptake and crop transpiration. Journal of Hydrology, 603, 126952. https://doi.org/10.1016/j.jhydrol.2021.126952

Donovan, L., Linton, M., & Richards, J. (2001). Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia, 129(3), 328-335. https://doi.org/10.1007/s004420100738

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. 3.ed. Brasília: Embrapa Informação Tecnológica, 2013. 353p.

Hura, T., Grzesiak, S., Hura, K., Thiemt, E., Tokarz, K., & Wędzony, M. (2007). Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Annals of botany, 100(4), 767-775. https://doi.org/10.1093/aob/mcm162

Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R., & Panneerselvam, R. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology, 11(1), 100-105.

Kang, S., Hao, X., Du, T., Tong, L., Su, X., Lu, H., ... & Ding, R. (2017). Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agricultural Water Management, 179, 5-17. https://doi.org/10.1016/j.agwat.2016.05.007

Kørup, K., Laerke, P. E., Baadsgaard, H., Andersen, M. N., Kristensen, K., Muennich, C., ... & Jørgensen, U. (2018). Biomass production and water use efficiency in perennial grasses during and after drought stress. Gcb Bioenergy, 10, 12-27. https://doi.org/10.1111/gcbb.12464

Medrano, H., Tomás, M., Martorell, S., Flexas, J., Hernández, E., Rosselló, J., ... & Bota, J. (2015). From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. The Crop Journal, 3, 220-228. https://doi.org/10.1016/j.cj.2015.04.002

Miller, G. L., & McCarty, L. B. (2001). Water relations and rooting characteristics of three Stenotaphrum secundatum turf cultivars grown under water deficit conditions. International Turfgrass Society Research Journal, 9, 323-327.

Mwendia, S. W., Yunusa, I. A., Sindel, B. M., Whalley, R. D., & Kariuki, I. W. (2017). Assessment of Napier grass accessions in lowland and highland tropical environments of East Africa: water stress indices, water use and water use efficiency. Journal of the Science of Food and Agriculture, 97, 1953-1961. https://doi.org/10.1002/jsfa.8004

Pacheco, L. P., Monteiro, M., de Sousa, M., Petter, F. A., Nóbrega, J. C. A., & SANTOS, A. S. D. (2017). Biomass and nutrient cycling by cover crops in brazilian cerrado in the state of Piauí. Revista Caatinga, 30, 13-23. https://doi.org/10.1590/1983-21252017v30n102rc

Peek, M. S., Leffler, A. J., Hipps, L., Ivans, S., Ryel, R. J., & Caldwell, M. M. (2006). Root turnover and relocation in the soil profile in response to seasonal soil water variation in a natural stand of Utah juniper (Juniperus osteosperma). Tree physiology, 26(11), 1469-1476. https://doi.org/10.1093/treephys/26.11.1469

Quiloango-Chimarro, C., Coelho, R. D., Costa, J. O., & Gomez-Arrieta, R. (2021). Crop water stress index for predicting yield loss in common bean. Irriga, 1(4), 687-695. https://doi.org/10.15809/irriga.2021v1n4p687-695

Tapparo, S. A., Coelho, R. D., Costa, J. O., & Chaves, S. W. P. (2019). Growth and establishment of irrigated lawns under fixed management conditions. Scientia Horticulturae, 256, 108580. https://doi.org/10.1016/j.scienta.2019.108580

Wichelns, D., & Qadir, M. (2015). Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agricultural Water Management, 157, 31-38. https://doi.org/10.1016/j.agwat.2014.08.016

Downloads

Publicado

17-06-2022

Como Citar

André Tapparo, S., Duarte Coelho, R., Costa, J., Weine Paulino Chaves, S., Alberto Quiloango-Chimarro, C., & dos Santos de Oliveira, E. (2022). Relationships between leaf water potential and soil water potential in grasses subjected to water stress. Revista Brasileira De Engenharia De Biossistemas, 16. https://doi.org/10.18011/bioeng.2022.v16.1091

Edição

Seção

INOVAGRI Meeting 2021