COMPOSITE BASED ON AGRICULTURAL WASTE FOR USE AS LINING POULTRY HOUSES

Authors

  • J. C. M. Cravo
  • D. de L. Sartori
  • J. C. de C. Balieiro
  • J. Fiorelli

DOI:

https://doi.org/10.18011/bioeng2015v9n4p358-367

Keywords:

thermal insulation, particleboards, poultry

Abstract

The lining is an alternative to smoothen the flow of heat to the interior of the poultry housing. However, the main insulating materials are toxic when burned. From this perspective, this study investigated the thermal properties and durability of the effect on the mechanical properties of a composite based agricultural waste for use as lining in poultry houses. Peanut shell and coconut fiber were used (50:50) and 15% bi-component polyurethane resin to castor oil-based. The specific heat, thermal diffusivity and thermal lag were measured and compared with other insulating materials. The effect of durability performance was evaluated by rupture modulus and elastic modulus. The thermal results reported that the composite has potential for application as thermal insulation, while the evaluation of the durability revealed the need to incorporate a coating to ensure consistency of mechanical properties of the composite.

Downloads

Download data is not yet available.

References

ABNT 02:135.07-001/2. Desempenho térmico de edificações parte 1: Definições, símbolos e unidades. Rio de Janeiro, 2003, 7p.

ABNT 02:135.07-001/2. Desempenho térmico de edificações parte 2: Métodos de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. Rio de Janeiro, 2003, 21p.

ABNT 14810. Chapas de madeira aglomerada- parte 3: Métodos de Ensaio, terminologia. Rio de Janeiro, 2006, 32p.

ABREU, P.G.; ABREU, V.M.N.; COLDEBELLA, A.; JAENISCH, F.R.F.; PAIVA, D.P. Condições térmicas ambientais e desempenho de aves criadas em aviários com e sem o uso de forro. Arquivo Brasileiro de Medicina Veterinária Zootecnia, Belo Horizonte, v.59, n.4, p. 1014 – 1020, 2007.

ASTM D 1435. Standard Practice for Outdoor Weathering of Plastics. Philadelphia, 1994, 5p.

BAÊTA, F. C.; SOUZA, C. F. Ambiência em edificações rurais: conforto térmico animal. Viçosa, MG: UFV, 2010. 269 p.

BEKTAS, I.; GULER, C.; KALAYCIOGLU, H.; MENGELOGLU, F.; NACAR, M. The manufacture of particleboards using sunflower stalks (Helianthus annuus L.) and poplar wood (Populus alba L.). Journal of Composite Materials, Lancaster, v.39, n.5, p.467-473, 2005.

CRAVO, J.C.M.; SARTORI, D.L.; NAKANISHI, E.Y.; FIORELLI, J.; BALIEIRO, J.C.C.; SANTOS, W.N. Forro ecológico de resíduos agroindustriais para galpões avícolas. Ciência Rural, Santa Maria, v.44, n.8, p. 1466-1471, 2014.

CRAVO, J.C.M.; SARTORI, D.L.; FIORELLI, J.; BALIEIRO, J.C.C.; SAVASTANO JUNIOR, H. Painel aglomerado de resíduos agroindustriais. Ciência Florestal, Santa Maria, v.25, n.3, p.719-728, 2015.

FROTA, A. B.; SCHIFFER, S. R. Manual de conforto térmico: arquitetura e urbanismo. São Paulo, SP: Studio Nobel , 2001. 244 p.

HIGHLEY, T. Biodeterioration of wood. Wood Handbook: Wood as an Engineering Material [M]. Wisconsin: USDA Forest Service Forest Products Laboratory, p.16, 1999.

LIANG, H.H.; HO, M.C. Toxicity characteristics of commercially manufactured insulation materials for building applications in Taiwan. Construction and Building Materials, v.21, n.1, p.1254-1261, 2007.

MENDONÇA, F.; DANNI-OLIVEIRA, I. M. Climatologia: noções básicas e climas do Brasil. São Paulo, SP, 2011. 206 p.

MENDES, J.U.L.; SILVEIRA, F.F.; CAVALCANTI, S.L.L; OLIVEIRA, L.K.R.; RIBEIRO, F.A.; SOUSA, R.F. Determinação da difusividade térmica de um compósito natural visando classificá-lo como isolante térmico. CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIA DOS MATERIAIS, Joinville, SC, Brasil.

NDAZI, B.; TESHA, J.V.; BISANDA, E.T.N. Some opportunities and challenges of producing bio-compoaites from non-wood residues. Journal Mater Science, v. 41, n.21, p.6984-6990, 2006.

OLIVEIRA, G.A.; OLIVEIRA, R.F.M.; DONZELE, J.L; CECON, P.R.; VAZ, R.G.M.V.; ORLANDO, U.A.D. Efeitos da temperatura ambiente sobre o desempenho e as características de carcaça de frangos de corte dos 22 aos 42 dias. Revista Brasileira de Zootecnia, Viçosa, v. 35, n.4, p.1398-1405, 2006.

PANYAKAEW S.; FOTIOS S. New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, v.43, n.7, p.1732-1739, 2011.

SUZUKI S.; WATAI J. Literature review for durability performance of wood and wood-based material (in Japanese). Bull Shizuoka Univ For, v.24, [s.n], p.63-70, 2000.

TANGJUANK, S. Thermal insulation and physical properties of particleboards from pineapple leaves. International Journal of Physical Sciences, v. 6, n. 19, p. 4528-4532, 2011.

TANGJUANK, S.; KUMFU, S. Particle boards from papyrus fibers as thermal insulation. Journal of Applied Sciences, v. 11, n. 14, p. 2640-2645, 2011.

VARJÃO SILVA, M.A. Meteorologia e climatologia. Versão digital 2. Recife, Pernambuco; 2006.

WANG, S. H. Construction Materials Science, China Construction Industry Publisher, Beijing, 1988.

WEI-HONG W.; KENT S.; FREITAG C.; LEICHTI R.J.; MORRELL J.J. Effect of moisture and fungal exposure on the mechanical properties of hem-fir plywood. Journal of Forestry Research, v.16, n.4, p.299-300, 2005.

XU, J.; SUGAWARA, R.; WIDYORINI, R.; HAN, G.; KAWAI, S. Manufacture and properties of low-density binderless particleboard from kenaf core. Journal Wood Science. Japão, v. 50, n.1, p. 62-67, 2004.

Published

2015-12-09

How to Cite

CRAVO, J. C. M.; SARTORI, D. de L.; BALIEIRO, J. C. de C.; FIORELLI, J. COMPOSITE BASED ON AGRICULTURAL WASTE FOR USE AS LINING POULTRY HOUSES. Revista Brasileira de Engenharia de Biossistemas, Tupã, São Paulo, Brazil, v. 9, n. 4, p. 358–367, 2015. DOI: 10.18011/bioeng2015v9n4p358-367. Disponível em: https://seer.tupa.unesp.br/index.php/BIOENG/article/view/332. Acesso em: 17 oct. 2021.

Issue

Section

Articles