Soil compaction in progressive agricultural tractor treads

Authors

  • Aldir Carpes Marques Filho Department of Agricultural Engineering, School of Engineering, Federal University of Lavras – UFLA, Lavras, MG, Brazil. https://orcid.org/0000-0002-9105-0040
  • Michel dos Santos Moura Department of Rural Engineering, School of Agricultural Sciences, São Paulo State University – UNESP, Botucatu, SP, Brazil.
  • André Campos Melo Department of Rural Engineering, School of Agricultural Sciences, São Paulo State University – UNESP, Botucatu, SP, Brazil.
  • Fellippe Aroon de Jesus Damasceno Department of Rural Engineering, School of Agricultural Sciences, São Paulo State University – UNESP, Botucatu, SP, Brazil.
  • Kléber Pereira Lanças Department of Rural Engineering, School of Agricultural Sciences, São Paulo State University – UNESP, Botucatu, SP, Brazil. https://orcid.org/0000-0002-6569-6710

DOI:

https://doi.org/10.18011/bioeng.2024.v18.1117

Keywords:

Mechanization, Soil density, Cone index

Abstract

Soil compaction is one of the main problems in world agriculture. It is known that, even in soil conservation management, such as in no-till, the transit of agricultural machinery damages the soil structure, therefore, it is essential to better understand the compaction processes and ways to alleviate the problem. In soils that have traditional tillage management, just one machine pass can damage the physical structure. This research aimed to evaluate the levels of compaction as a function of different passages of an agricultural tractor, considering the hypothesis that, during agricultural operations, a machine transits several times through the same place in the crop. The experiment was carried out on plowed and harrowed agricultural soil in the state of São Paulo. Resistance to soil penetration at different depths was evaluated, and the averages were correlated as a function of the number of steps taken by the tractor. Results showed that approximately 60% of the total soil compaction occurs in the first passes of the agricultural tractor, and above five passes the increase in compaction is minimal. At depths of 20 to 30 cm, the largest RSPs were found. It is concluded that a good planning of machinery traffic is essential, because in the case of a motor-mechanized set moving out of its predestined route, the soil structure is permanently affected.

Downloads

Download data is not yet available.

Author Biographies

Fellippe Aroon de Jesus Damasceno, Department of Rural Engineering, School of Agricultural Sciences, São Paulo State University – UNESP, Botucatu, SP, Brazil.

Universidade Estadual Paulista - Depto Engenharia Agrícola

Kléber Pereira Lanças, Department of Rural Engineering, School of Agricultural Sciences, São Paulo State University – UNESP, Botucatu, SP, Brazil.

Universidade Estadual Paulista - Departamento de Engenharia Rural

References

Alaoui, A., & Diserens, E. (2018). Mapping soil compaction–A review. Current opinion in environmental science & health, 5, 60-66. https://doi.org/10.1016/j.coesh.2018.05.003 DOI: https://doi.org/10.1016/j.coesh.2018.05.003

Arcoverde, S. N., Souza, C., Rafull, L. Z., Cortez, J. W., & Orlando, R. C. (2020). Soybean agronomic performance and soil physical attributes under tractor traffic intensities. Engenharia Agrícola, 40, 113-120. https://doi.org/10.1590/1809-4430-Eng.Agric.v40n1p113-120/2020. DOI: https://doi.org/10.1590/1809-4430-eng.agric.v40n1p113-120/2020

Bergamin, A. C., Vitorino, A. C. T., Franchini, J. C., Souza, C. M. A. D., & Souza, F. R. D. (2010). Compactação em um Latossolo Vermelho distroférrico e suas relações com o crescimento radicular do milho. Revista Brasileira de Ciência do Solo, 34(3), 681-691. https://doi.org/10.1590/S0100-06832010000300009 DOI: https://doi.org/10.1590/S0100-06832010000300009

Camargo, O. A., Alleoni, L. R. F. (2019) Causas da compactação do solo. Disponível em: <http://www.infobibos.com/Artigos/CompSolo/C3/Comp3.htm>. Access: 01 out. 2021.

Colombi, T., & Keller, T. (2019). Developing strategies to recover crop productivity after soil compaction—A plant eco-physiological perspective. Soil and Tillage Research, 191, 156-161. https://doi.org/10.1016/j.still.2019.04.008 DOI: https://doi.org/10.1016/j.still.2019.04.008

Esteban, D. A. A., de Souza, Z. M., Tormena, C. A., Lovera, L. H., de Souza Lima, E., de Oliveira, I. N., & de Paula Ribeiro, N. (2019). Soil compaction, root system and productivity of sugarcane under different row spacing and controlled traffic at harvest. Soil and Tillage Research, 187, 60-71. https://doi.org/10.1016/j.still.2018.11.015 DOI: https://doi.org/10.1016/j.still.2018.11.015

Hargreaves, P. R., Baker, K. L., Graceson, A., Bonnett, S., Ball, B. C., & Cloy, J. M. (2019). Soil compaction effects on grassland silage yields and soil structure under different levels of compaction over three years. European Journal of Agronomy, 109, 125916. https://doi.org/10.1016/j.eja.2019.125916 DOI: https://doi.org/10.1016/j.eja.2019.125916

Horn, R. (2015). Soil compaction and consequences of soil deformation on changes in soil functions. Task force: Soil matters—Solutions under foot, 28-33.

Martins, P. C. C., Dias Junior, M. D. S., Ajayi, A. E., Takahashi, E. N., & Tassinari, D. (2018). Soil compaction during harvest operations in five tropical soils with different textures under eucalyptus forests. Ciência e Agrotecnologia, 42, 58-68. http://dx.doi.org/10.1590/1413-70542018421005217 DOI: https://doi.org/10.1590/1413-70542018421005217

Molina Junior, W. F. (2017). Comportamento mecânico do solo em operações agrícolas. Piracicaba: ESALQ/USP. https://doi.org/10.11606/9788592238407 DOI: https://doi.org/10.11606/9788592238407

de Moraes, M. T., Debiasi, H., Franchini, J. C., Mastroberti, A. A., Levien, R., Leitner, D., & Schnepf, A. (2020). Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil and Tillage Research, 200, 104611. https://doi.org/10.1016/j.still.2020.104611 DOI: https://doi.org/10.1016/j.still.2020.104611

Olubanjo, O. O., & Yessoufou, M. A. (2019). Effect of Soil Compaction on the Growth and Nutrient Uptake of Zea Mays L. Sustainable Agriculture Research, 8(526-2020-528), 46-54. https://doi.org/sar.v8n2p46 DOI: https://doi.org/10.5539/sar.v8n2p46

Santos, H. G., JACOMINE, P. K. T., Dos Anjos, L. H. C., De Oliveira, V. A., LUMBRERAS, J. F., COELHO, M. R., ... & CUNHA, T. J. F. (2018). Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018.

Ungureanu, N., Vlăduţ, V., & Cujbescu, D. (2019). Soil compaction under the wheel of a sprayer. In E3S web of conferences (Vol. 112, p. 03027). EDP Sciences. https://doi.org/10.1051/e3sconf/201911203027 DOI: https://doi.org/10.1051/e3sconf/201911203027

Valicheski, R. R., Grossklaus, F., Stürmer, S. L., Tramontin, A. L., & Baade, E. S. (2012). Desenvolvimento de plantas de cobertura e produtividade da soja conforme atributos físicos em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental, 16(9), 969-977. https://doi.org/10.1590/S1415-43662012000900007 DOI: https://doi.org/10.1590/S1415-43662012000900007

Downloads

Published

2024-06-05

How to Cite

Marques Filho, A. C., Moura, M. dos S., Melo, A. C., Damasceno, F. A. de J., & Lanças, K. P. (2024). Soil compaction in progressive agricultural tractor treads. Revista Brasileira De Engenharia De Biossistemas, 18. https://doi.org/10.18011/bioeng.2024.v18.1117

Issue

Section

Regular Section