VINHAÇA DO PROCESSO DE ETANOL LIGNOCELULÓSICO BRASILEIRO: COMPOSIÇÃO QUÍMICA E POTENCIAL PARA BIOPROCESSOS

Autores

  • Manuella Souza Silverio
  • Rubens Perez Calegari
  • Gabriela Maria Ferreira Lima Leite
  • Laysa Maciel Lewandowski Meira Prado
  • Bianca Chaves Martins
  • Eric Alberto da Silva
  • José Piotrovski Neto
  • André Gomig
  • Antonio Sampaio Baptista

DOI:

https://doi.org/10.18011/bioeng2021v15n1p42-68

Palavras-chave:

Setor sucroenergético, Análises cromatográficas, Valorização de resíduos, Biorrefinarias, Vinhaça 2G

Resumo

O Brasil é o segundo maior produtor de etanol e os resíduos gerados pela fermentação alcoólica têm levantado questões econômicas e ambientais. Recentemente a indústria brasileira implantou o processo de segunda geração (2G) para atender às crescentes demandas pelo biocombustível. Neste estudo, foi investigado se a vinhaça 2G tem potencial para trazer os mesmos desafios ambientais associados à vinhaça de primeira geração (1G), isto é, aquela proveniente dos processos de etanol a partir de caldo e/ou melaço de cana-de-açúcar. Foi coletada vinhaça de uma das unidades de etanol 2G recentemente instaladas no Estado de São Paulo e, então, caracterizada quimicamente. Considerando-se glicerol, manitol, açúcares residuais e ácidos orgânicos, determinou-se que a vinhaça 2G possui um total de fonte de carbono de 23.050 mg L-1 (comparado a 4.800 mg L-1 na vinhaça 1G). Magnésio, cálcio, potássio e outros sais também foram determinados. Com base na composição química, vinhaças podem ser consideradas fontes de nutrientes para bioprocessos. Finalmente, foram abordados bioprocessos cujas demandas nutricionais podem ser completa ou parcialmente garantidas pelas vinhaças, resultando na produção de bioenergia ou bioprodutos.

Downloads

Não há dados estatísticos.

Referências

APHA. "Standard Methods for the Examination of Water and Wastewater: 5220 D. Closed Reflux, Colorimetric Method", edited by American Public Health Association, pp. 5-14 - 5-19, 2012. ISBN 978-0875530130.

Barros, V. G.; Duda, R. M.; Vantini, J. S.; Omori, W. P.; Ferro, M. T.; Oliveira, R. A. Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria. Bioresource Technology, v. 244: 371-381, 2017. https://doi.org/10.1016/j.biortech.2017.07.106

Becker, A.; Katzen, F.; Puhler, A.; Ielpi, L. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Applied Microbiology Biotechnology, v. 50: 145-152, 1998. https://doi.org/10.1007/s002530051269

Becker, J.; Zelder, O.; Hafner, S.; Schroder, H.; Wittmann, C. From zero to hero - Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metabolic Engineering, v. 13:159-168, 2011. https://doi.org/10.1016/j.ymben.2011.01.003

Benincasa, M.; Contiero, J.; Manresa, M. A.; Moraes, I. O. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on a slapstick as the sole carbon source. Journal of Food Engineering, v. 54: 283-288, 2002. https://doi.org/10.1016/S0260-8774(01)00214-X

Biswas, A. K.; Mohanty, M.; Hati, K. M.; Misra, A. K. Distillery effluents effect on soil organic carbon and aggregate stability of a Vertisol in India. Soil & Tillage Research, v. 104: 241-246, 2009. https://doi.org/10.1016/j.still.2009.02.012

Brandão, L. V.; Assis, D. J.; López, J. A.; Espiridião, M. C. A.; Echevarria, E. M.; Druzian, J. I. Bioconversion from crude glycerin by Xanthomonas campestris 2103: xanthan production and characterization. Brazilian Journal of Chemical Engineering, v. 30: 737-746, 2013. https://doi.org/10.1590/S0104-66322013000400006

Cassman, N. A.; Lourenço, K. S.; Carmo, J. B.; Cantarella, H.; Kuramae, E. E. Genome-resolved metagenomics of sugarcane vinasse bacteria. Bioenergy for Biofuels, v. 11: 48, 2018. https://doi.org/10.1186/s13068-018-1254-1

CETESB. Norma Técnica P4.231, 3ª Edição, 2ª Versão: Vinhaça - critérios e procedimentos para aplicação no solo. Access: https://cetesb.sp.gov.br/wp-content/uploads/2013/11/NTC-P4.231_Vinhaça_-Critérios-e-procedimentos-para-aplicação-no-solo-agr%C3%ADcola-3ª-Ed-2ª-VERSÃO.pdf, 2013.

Christofoletti, C. A.; Pedro-Escher, J.; Correia, J. E.; Marinho, J. F. U.; Fontanetti, C. S. Sugarcane vinasse: Environmental implications of its use. Waste Management, v. 33: 2752-2761, 2013. https://doi.org/10.1016/j.wasman.2013.09.005

Coelho, M. P. M.; Correia, J. E.; Vasques, L. I.; Marcato, A. C. C.; Guedes, T. A.; Soto, M. A.; Basso, J. B.; Kiang. C.; Fontanetti, C. S. Toxicity evaluation of leached of sugarcane vinasse: Histopathology and immunostaining of cellular stress protein. Ecology and Environmental Safety, v. 165: 367-375, 2018. https://doi.org/10.1016/j.ecoenv.2018.08.099

Cortez, L. A. B. "Sugarcane Bioethanol: R&D for productivity and sustainability", edited by Editora Edgard Blucher Ltda., 2010, pp. 994. ISBN-10: 8521205309.

Desouky, S. E. S.; Abdel-Rahman, M. A.; Azab, M. S.; Esmael, M. E. Batch and fed-batch production of polyhydroxyalkanoates from sugarcane molasses by Bacillus plexus Azu-A2. Journal of Innovation in Pharmaceutical and Biological Sciences, v. 4: 55-66, 2017.

Dias, M. O. S.; Junqueira, T. L.; Jesus, C. D. F.; Rossell, C. E. V.; Maciel-Filho, R.; Bonomi, A. Improving bioethanol production - Comparison between extractive and low temperature fermentation. Applied Energy, v. 98: 548-555, 2012. https://doi.org/10.1016/j.apenergy.2012.04.030

Dowd, M. K.; Johansen, S. L.; Cantarella, L. Low molecular weight organic composition of ethanol stillage from sugarcane molasses, citrus waste, and sweet whey. Journal of Agriculture and Food Chemistry, v. 42: 283-288, 1994. https://doi.org/10.1021/jf00038a011

Eggleston, G.; Basso, L. C.; Amorim, H. V.; Paulillo, S. C. L.; Basso, T. O. Mannitol as a sensitive indicator of sugarcane deterioration and bacterial contamination in fuel alcohol production. Zuckerindustrie/Sugar Industry, v. 132: 33-39, 2007.

Esa, F.; Tarisin, S. M.; Rahman, N. A. Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, v. 2: 113-119, 2014. https://doi.org/10.1016/j.aaspro.2014.11.017

España-Gamboa, E.; Mijangos-Cortes, J.; Barahona-Perez, L.; Dominguez-Maldonado, J.; Hernández-Zarate, G.; Alzate-Gaviria, L. Vinasses: characterization and treatments. Waste Management and Research, v. 1: 16, 2011. https://doi.org/10.1177/0734242X10387313

España-Gamboa, E.; Mijangos-Cortes, J.; Hernández-Zarate, G.; Dominguez-Maldonado, J.; Alzate-Gaviria, L. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor. Biotechnology for Biofuels, v. 5: 82-90, 2012. DOI: 10.1186/1754-6834-5-82. https://doi.org/10.1186/1754-6834-5-82

Ferreira, L. F. R.; Aguiar, M. M.; Messias, T. G.; Pompeu, G. B.; Lopez, A. M. Q.; Sila, D. P.; Monteiro, R. T. Evaluation of sugar-cane vinasse treated with Pleurotus sajor-caju utilizing aquatic organisms as toxicological indicators. Ecotoxicology and Environmental Safety, v. 74: 132-137, 2011. https://doi.org/10.1016/j.ecoenv.2010.08.042

Jardine, J. G.; Dispato, I.; Peres, M. R. Considerações Sobre o Bioetanol Lignocelulósico para Subsidiar a Elaboração de Conteúdo da Árvore do Conhecimento Agroenergia. Access: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/17345/1/doc95.pdf. 2009.

Julkunen-Tiitto, R. Phenolic Constituents in the Leaves of Northern Willows: Methods for the Analysis of Certain Phenolics. Journal of Agricultural and Food Chemistry, v. 33: 213-217, 1985. https://doi.org/10.1021/jf00062a013

Kadier, A.; Simayi, Y.; Kalil, M. S.; Abdeshasian, P.; Hamid, A. A. A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renewable Energy, v. 71: 466-472, 2014. https://doi.org/10.1016/j.renene.2014.05.052

Khiyami, M. A.; Al-Fadual, S.; Bahklia, A. H. Polyhydroxyalkanoates production via Bacillus plastic composite support (PCS) biofilm and date palm syrup. Journal of Medicinal Plants Research, v. 5: 3312-3320, 2011.

Lopes, M. L.; Paulillo, S. C. L.; Godoy, A.; Cherubin, R. A.; Lorenzi, M. S.; Giometti, F. H. C. Ethanol production in Brazil: a bridge between science and industry. Brazilian Journal of Microbiology, v. 47: 64-76, 2016. https://doi.org/10.1016/j.bjm.2016.10.003

López-López, A.; León-Becerril, E.; Rosales-Contreras, M. E.; Villegas-García, E. Influence of alkalinity and VFAs on the performance of an UASB reactor with recirculation for the treatment of Tequila vinasses. Environmental Technology, v. 36: 2468-2476, 2015. https://doi.org/10.1080/09593330.2015.1034790

Liu, L.; Duan, X.; Wu, J. L-Tryptophan production in Escherichia coli improved by weakening Pta-AckA pathway. PLoS ONE, v. 11: e0158200, 2016. https://doi.org/10.1371/journal.pone.0158200

Lu, L.; Ren, N.; Xing, D.; Logan, B. E. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single chamber microbial electrolysis cell. Biosensors and Bioelectronics, v. 24: 3055-3060, 2009. https://doi.org/10.1016/j.bios.2009.03.024

Macrelli, S.; Galbe, M.; Wallberg, O. Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock. Biotechnology for Biofuels, v. 7: 26, 2014. https://doi.org/10.1186/1754-6834-7-26

Md, F. Biosurfactant: Production and Application. Journal of Petroleum & Environmental Biotechnology, v. 3: 4, 2012. https://doi.org/10.4172/2157-7463.1000124

Medina, C. C.; Neves, C. S. V. J.; Fonseca, I. C. B.; Torreti, A. F. Crescimento radicular e produtividade de cana-de-açúcar em função de doses de vinhaça em fertirrigação. Semina: Ciências Agrárias, v.23: 179-184, 2002. https://doi.org/10.5433/1679-0359.2002v23n2p179

Metrohm. Metrosep Carb 2: Carbohydrate separation column for ion chromatography. Access: https://partners.metrohm.com/GetDocument?action=get_dms_document&docid=2405773. 2016

Metrohm. Fast IC: Separation of standard cations in five minutes, IC Application Note C-151. Access: https://www.metrohm.com/en-ae/applications/%7BD22BB24A-448D-4B18-A82B-6AF45179057C%7D?fromApplicationFinder=true. 2015a.

Metrohm. Determination of anions in tap water in accordance with US EPA Method 300. Access: https://www.metrohm.com/en/applications/%7B1F9E1DD6-4846-411D-B6BA-0FB23BAC20D6%7D?fromApplicationFinder=true. 2015b.

Moraes, B. S.; Junqueira, T. L.; Pavanello, L. G.; Cavalett, O.; Mantelatto, P. E.; Bonomi, A.; Zaiat, M. Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense? Applied Energy, v. 113: 825-835, 2014. https://doi.org/10.1016/j.apenergy.2013.07.018

Moraes, B. S.; Petersen, S. O.; Zaiat, M.; Sommer, S. G.; Triolo, J. M. Reduction in greenhouse gas emissions from vinasse through anaerobic digestion. Applied Energy, v. 189: 21-30, 2017. https://doi.org/10.1016/j.apenergy.2016.12.009

Moraes, B. S.; Zaiat, M.; Bonomi, A. Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives. Renewable and Sustainable Energy Reviews, v. 44: 888-903, 2015. https://doi.org/10.1016/j.rser.2015.01.023

Nacheva, P. M.; Chávez, G. M.; Chacón, J. M.; Chuil, A. C. Treatment of sugarcane mill wastewater in an upflow anaerobic sludge bed reactor. Water Science and Technology, v. 60: 1347-1352, 2009. https://doi.org/10.2166/wst.2009.402

Naspolini, B. F.; Machado, A. C. O.; Crav-Junior, W. B.; Freire, D. M. G.; Cammarota, M. C. Bioconversion of sugarcane vinasse into high-added value products and energy. Biomed Research International, v. 2017, 8986165, 2017. https://doi.org/10.1155/2017/8986165

Nevoigt, E.; Stahl, U. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews, v. 21: 231-241, 1997. https://doi.org/10.1111/j.1574-6976.1997.tb00352.x

Oliva-Neto, P. and Yokoya, F. Susceptibility of Saccharomyces cerevisiae and lactic acid bacteria from the alcohol industry to several antimicrobial compounds. Brazilian Journal of Microbiology, v. 32: 10-14, 2001. https://doi.org/10.1590/S1517-83822001000100003

Oliveira, B. G.; Carvalho, J. L. N.; Cerri, C. E. P.; Cerri, C. C.; Feigl, B. Greenhouse gas emissions from sugarcane vinasse transportation by open channel: a case study in Brazil. Journal of Cleaner Production, v. 94: 102-107, 2015. https://doi.org/10.1016/j.jclepro.2015.02.025

Ortiz-Muniz, B.; Carvajal-Zarrabal, O.; Torrestiana-Sanchez, B.; Aguilar-Uscanga, M. G. Kinetic study on ethanol production using Saccharomyces cerevisiae ITV-01 yeast isolated from sugar cane molasses. Journal of Chemical Technology and Biotechnology, v. 85: 1361-1367, 2010. https://doi.org/10.1002/jctb.2441

Pathak, H.; Joshi, H. C.; Chaudhary, A.; Chaudhary, R.; Kalra, N.; Dwiwedi, M. K. Soil amendment with distillery effluent for wheat and rice cultivation. Water, Air and Soil Pollution, v. 113: 133-140, 1999. https://doi.org/10.1023/A:1005058321924

Paulino, A.; Medina, C.; Robaina, C.; Laurani, R. Produções agrícola e industrial de cana-de-açúcar submetida a doses de vinhaça. Semina: Ciências Agrárias, v. 23: 145-150, 2002. https://doi.org/10.5433/1679-0359.2002v23n2p145

Pedro-Escher, J.; Maziviero, G. T.; Fontanetti, C. S. Mutagenic action of sugarcane vinasse in the Tradescantia pallida Test System. Journal of Ecosystem & Econography, v. 4: 2, 2014. https://doi.org/10.4172/2157-7625.1000145

Penteado, E. D.; Lazaro, C. Z.; Sakamoto, I. K.; Zaiat, M. Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. International Journal oh Hydrogen Energy, v. 38: 6137-6145, 2013. https://doi.org/10.1016/j.ijhydene.2013.01.067

Prado, E. A. F.; Vitorino, A. C. T.; Marchi, G.; Muniz, D. H. F.; Souza, T. A. Vinasse dynamics on soil solution under sugarcane crop: inorganic and organic ion analysis. Water, Air, and Soil Pollution, v. 227: 145, 2016. https://doi.org/10.1007/s11270-016-2846-7

Ratanapariyanuch, K.; Shen, J.; Jia, Y.; Tyler, R. T.; Shim, Y. Y.; Reaney, M. J. T. Rapid NMR method for the quantification of organic compounds in thin stillage. Journal of Agricultural and Food Chemistry, v. 59: 10454-10460, 2011. https://doi.org/10.1021/jf2026007

Rathika, R.; Janaki, V.; Shanthi, K.; Kamala-Kannan. S. Bioconversion of agro-industrial effluents for polyhydroxyalkanoates production using Bacillus subtilise RS1. International Journal of Environmental Science and Technology, v. 16: 5725-5734, 2018. https://doi.org/10.1007/s13762-018-2155-3

Reis, C. M.; Carosia, M. F.; Sakamoto, I. K.; Varesche, M. B. A.; Silva, E. L. Evaluation of hydrogen and methane production from sugarcane vinasse in an anaerobic fluidized bed reactor. International Journal of Hydrogen Energy, v. 40: 8498-8509, 2015. https://doi.org/10.1016/j.ijhydene.2015.04.136

Revin, V.; Liyaskina, E.; Nazarkina, M.; Bogatyreva, A.; Shchankin, M. Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian Journal of Microbiology, v. 495: 151-159, 2018. https://doi.org/10.1016/j.bjm.2017.12.012

Ribeiro, A. C.; Novais, R. F.; Bahia-Filho, A. F. C. Efeitos da vinhaça sobre a dispersão de argila de amostras de latossolos. Revista Ceres, v. 30 (167): 12-18, 1983.

Rittmann, D.; Lindner, S. N.; Wendisch, V. F. Engineering of a glycerol utilisation pathway for amino acid production by Corynebacterium glutamicum. Applied and Environmental Microbiology, v. 74: 6216-6222, 2008. https://doi.org/10.1128/AEM.00963-08

Roncevic, Z. Z.; Bajic, B. Z.; Grahovac, J. A.; Dodic, S. N.; Dodic, J. M. Effect of the initial glycerol concentration in the medium on the xanthan biosynthesis. Acta Periodica Technologica, v. 45: 238-246, 2014. https://doi.org/10.2298/APT1445239R

Sahu, O. Assessment of sugarcane industry: Suitability for production, consumption and utilisation. Annals of Agrarian Science, v. 16: 389-395, 2018. https://doi.org/10.1016/j.aasci.2018.08.001

Santos, F. P.; Oliveira-Junior, A. M.; Nunes, T. P.; Silva, C. E. F.; Abud, A. K. S. Bioconversion of agro-industrial wastes into xanthan gum. Chemical Engineering Transaction, v. 49: 145-150, 2016.

Santos, G.A.; Rossiello, R. O. P.; Fernandes, M. S.; O'Grady, P. C. Efeitos da vinhaça sobre o pH do solo, a germinação e o acúmulo de potássio em milho. Pesquisa Agropecuária Brasileira, v. 16: 489-493 , 1981.

Silva, M. A. S.; Girebeler, N. P.; Borges, L. C. Uso de vinhaça e impactos nas propriedades do solo e lençol freático. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 11: 108-114, 2007. https://doi.org/10.1590/S1415-43662007000100014

Soto, M. A. A.; Basso, J. B.; Kiang, C. H.; Genuchten, M. T. Simulation of water flow and ion transport from vinasse in a transect of the Rio Claro formation. Águas Subterrâneas, v. 29: 162-174, 2015. https://doi.org/10.14295/ras.v29i2.28239

Souza, J. K. C.; Mesquita, F.O.; Dantas-Neto. J.; Souza, M. M. A.; Farias, C. H. A.; Mendes, H.C.; Nunes, R. M. A. Fertirrigação com vinhaça na produção de cana-de-açúcar. Agropecuária Científica no Seminárida, v. 11: 7-12, 2015.

Stams, A. J. M. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek, v. 66: 271-294, 1994. https://doi.org/10.1007/BF00871644

Stephen, J. D.; Mabee, W.E.; Saddler, J. N. Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels, Bioproducs and Biorefinering. v. 6: 159-176, 2012. https://doi.org/10.1002/bbb.331

Sydney, E. B. Valorization of vinasse as broth for biological hydrogen and volatile fatty acids production by means of anaerobic bacteria. Other. Université Blaise Pascal - Clermont-Ferrnd II, 2013. English.

UNICA. Balanço de Atividades 2012/13 a 2018/19. Acesso: https://unica.com.br/wp-content/uploads/2019/06/Relatorio-Atividades-201213-a-201819.pdf. 2019a.

UNICA. Moagem de cana-de-açúcar e produção de açúcar e etanol. Access: http://www.unicadata.com.br/pdfHPM.php?idioma=1&tipoHistorico=4&idTabela=1984&produto=&safra=2017/2018&safraIni=&safraFim=&estado=RS,SC,PR,SP,RJ,MG,ES,MS,MT,GO,DF,BA,SE,AL,PE,PB,RN,CE,PI,MA,TO,PA. 2019b.

UNICA. Etanol total - 1980/1981 até 2017/2018. Access: http://www.unicadata.com.br/historico-de-producao-e-moagem.php?idMn=31&tipoHistorico=2&acao=visualizar&idTabela=2316&produto=etanol_total&safraIni=1980%2F1981&safraFim=2017%2F2018&estado=RS%2CSC%2CPR%2CSP%2CRJ%2CMG%2CES%2CMS%2CMT%2CGO%2CDF%2CBA%2CSE%2CAL%2CPE%2CPB%2CRN%2CCE%2CPI%2CMA%2CTO%2CPA%2CAP%2CRO%2CAM%2CAC%2CRR. 2020.

U.S. Energy Information Administration. Data on U.S. fuel ethanol production, imports, exports and consumption. Access: https://www.eia.gov/tools/faqs/faq.php?id=90&t=4. 2019.

Ying, H.; He. X.; Li. Y.; Chen. K.; Ouyang, P. Optimization of culture conditions for enhanced lysine production using engineered Escherichia coli. Applied Biochemistry and Biotechnology, v. 172: 3835-3843, 2014. https://doi.org/10.1007/s12010-014-0820-7

Downloads

Publicado

20-04-2021

Como Citar

Souza Silverio, M., Perez Calegari, R., Ferreira Lima Leite, G. M., Maciel Lewandowski Meira Prado, L., Chaves Martins, B., Alberto da Silva, E., Piotrovski Neto, J., Gomig, A., & Sampaio Baptista, A. (2021). VINHAÇA DO PROCESSO DE ETANOL LIGNOCELULÓSICO BRASILEIRO: COMPOSIÇÃO QUÍMICA E POTENCIAL PARA BIOPROCESSOS . Revista Brasileira De Engenharia De Biossistemas, 15(1), 42–68. https://doi.org/10.18011/bioeng2021v15n1p42-68

Edição

Seção

Regular Section