Use of images for early identification of water stress

REVISÃO BIBLIOGRÁFICA

Autores

  • Renata Fernandes Alves Graduate in Biosystems Engineering, School of Science and Engineering, São Paulo State University - UNESP, Tupã, SP, Brazil https://orcid.org/0000-0002-5534-4703
  • Fernando Ferrari Putti Department of Biosystems Engineering, School of Science and Engineering, São Paulo State University - UNESP, Tupã, SP, Brazil https://orcid.org/0000-0002-0555-9271

DOI:

https://doi.org/10.18011/bioeng.2022.v16.1114

Palavras-chave:

Water deficit, leaf temperature, Identification, Stress, Plant

Resumo

The instability of climatic events intimidates the development of crops at a global level, as it can cause serious economic and social consequences in the face of increased demand for food. In this scenario, the use of images for early identification of water stress is considered a form of non-destructive identification of physical, biochemical, and plant development-related responses. Water deficit is responsible for triggering a series of responses in the plant due to the increase in the production of Reactive Oxygen Species (ROS) and the accumulation of Abscisic Acid (ABA) that promotes the closing of the stomata, limiting the evaporative cooling capacity performed by the plant, given the increase in its leaf temperature. The present article investigates the relationship between the water deficit in the plant and the consequent increase in its leaf temperature.

Downloads

Não há dados estatísticos.

Referências

ADDICOTT, Fredrick T. et al. Abscisic acid. Praeger., 1983. Disponível em < https://www.cabdirect.org/cabdirect/abstract/19830315251>.

ASHRAF, M. F. M. R.; FOOLAD, Majid R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany, v. 59, n. 2, p. 206-216, 2007. DOI: 10.1016/j.envexpbot.2005.12.006.

ASADA, Kozi. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant physiology, v. 141, n. 2, p. 391-396, 2006. DOI: 10.1104/pp.106.082040. DOI: https://doi.org/10.1104/pp.106.082040

ASAARI, Mohd Shahrimie Mohd et al. Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform. Computers and Electronics in Agriculture, v. 162, p. 749-758, 2019. Disponível em <https://www.sciencedirect.com/science/article/pii/S0168169918316703>. DOI: https://doi.org/10.1016/j.compag.2019.05.018

AUMOND, Juarês José. Restauração Ambiental de Sistemas Complexos. Editora Appris, 2020.

BARTOLI, Carlos G. et al. Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. Journal of Experimental Botany, v. 50, n. 332, p. 375-383, 1999. DOI: 10.1093/jxb/50.332.375. DOI: https://doi.org/10.1093/jxb/50.332.375

BARBER, James. Photosynthetic energy conversion: natural and artificial. Chemical Society Reviews, v. 38, n. 1, p. 185-196, 2009. DOI: 10.1039/B802262N. DOI: https://doi.org/10.1039/B802262N

BARRAL, Abel. Stomata feel the pressure. Nature plants, v. 5, n. 3, p. 244-244, 2019. DOI: 10.1038/s41477-019-0390-3. DOI: https://doi.org/10.1038/s41477-019-0390-3

BEARDSELL, Michael F.; COHEN, Daniel. Relationships between leaf water status, abscisic acid levels, and stomatal resistance in maize and sorghum. Plant Physiology, v. 56, n. 2, p. 207-212, 1975. DOI: 10.1104/pp.56.2.207. DOI: https://doi.org/10.1104/pp.56.2.207

BEHMANN, Jan et al. A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precision Agriculture, v. 16, n. 3, p. 239-260, 2015. DOI: 10.1007/s11119-014-9372-7. DOI: https://doi.org/10.1007/s11119-014-9372-7

BEHMANN, Jan; STEINRÜCKEN, Jörg; PLÜMER, Lutz. Detection of early plant stress responses in hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, v. 93, p. 98-111, 2014. Disponível em <https://www.sciencedirect.com/science/article/pii/S092427161400094X>. DOI: https://doi.org/10.1016/j.isprsjprs.2014.03.016

BOYER, JoS. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant physiology, v. 46, n. 2, p. 233-235, 1970. DOI: 10.1104/pp.46.2.233. DOI: https://doi.org/10.1104/pp.46.2.233

BLONDER, Benjamin et al. Low predictability of energy balance traits and leaf temperature metrics in desert, montane and alpine plant communities. Functional Ecology, v. 34, n. 9, p. 1882-1897, 2020. DOI: 10.1111/1365-2435.13643. DOI: https://doi.org/10.1111/1365-2435.13643

CANDAN, Nilgün; TARHAN, Leman. The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Science, v. 165, n. 4, p. 769-776, 2003. DOI: 10.1016/S0168-9452(03)00269-3. DOI: https://doi.org/10.1016/S0168-9452(03)00269-3

CHAVES, Manuela M.; MAROCO, João P.; PEREIRA, João S. Understanding plant responses to drought—from genes to the whole plant. Functional plant biology, v. 30, n. 3, p. 239-264, 2003. DOI: 10.1071/FP02076. DOI: https://doi.org/10.1071/FP02076

CHEN, Zeng-Ping; MORRIS, Julian; MARTIN, Elaine. Extracting chemical information from spectral data with multiplicative light scattering effects by optical path-length estimation and correction. Analytical Chemistry, v. 78, n. 22, p. 7674-7681, 2006. DOI: 10.1021/ac0610255. DOI: https://doi.org/10.1021/ac0610255

COSTA RODRIGUES, Gustavo et al. Resultados preliminares da plasticidade ondições em plantas de café (Coffea ondiçõ cv. Rubi e Iapar59) submetidas ao déficit ondiçõ em ondições de campo. 2011. Disponível em http://www.sbicafe.ufv.br/handle/123456789/2981. Acesso em: 15.08.2021.

CUNHA, Ana Paula et al. Extreme drought events over Brazil from 2011 to 2019. Atmosphere, v. 10, n. 11, p. 642, 2019. DOI: 10.3390/atmos10110642. DOI: https://doi.org/10.3390/atmos10110642

DAVIES, William J.; ZHANG, Jianhua. Root signals and the regulation of growth and development of plants in drying soil. Annual review of plant biology, v. 42, n. 1, p. 55-76, 1991. DOI: 10.1146/annurev.pp.42.060191.000415. DOI: https://doi.org/10.1146/annurev.pp.42.060191.000415

DE CARVALHO SILVEIRA, Jane Maria et al. USO DE IMAGENS MULTIESPECTRAIS E TERMOGRÁFICAS PARA MONITORAMENTO DAS CONDIÇÕES HÍDRICAS DA CANA-DE-AÇÚCAR. IRRIGA, v. 25, n. 4, p. 689-696, 2020. DOI: 10.15809/irriga.2020v25n4p689-696. DOI: https://doi.org/10.15809/irriga.2020v25n4p689-696

DOORENBOS, J.; KASSAM, A. H. Yield response to water. Irrigation and drainage paper, v. 33, p. 257, 1979. Disponível em https://books.google.com.br/books?hl=pt-BR&lr=&id=dAfLBAAAQBAJ&oi=fnd&pg=PA257&dq=Yield+response+to+water&ots=nRmw7vrWI2&sig=Sekd4dMrBGoyf1QgS2d48KA5HK0#v=onepage&q=Yield%20response%20to%20water&f=false. Acesso em: 02.08.2021.

FISCHER, R. A.; TURNER, Neil C. Plant productivity in the arid and semiarid zones. Annual Review of Plant Physiology, v. 29, n. 1, p. 277-317, 1978. Disponível em < https://www.annualreviews.org/doi/pdf/10.1146/annurev.pp.29.060178.001425> DOI: https://doi.org/10.1146/annurev.pp.29.060178.001425

FLOWERS, T. J.; YEO, A. R. Ion relations of plants under drought and salinity. Functional Plant Biology, v. 13, n. 1, p. 75-91, 1986. DOI: 10.1071/PP9860075. DOI: https://doi.org/10.1071/PP9860075

GE, Yufeng et al. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Computers and Electronics in Agriculture, v. 127, p. 625-632, 2016. Disponível em <https://www.sciencedirect.com/science/article/pii/S0168169916305464>. DOI: https://doi.org/10.1016/j.compag.2016.07.028

GILL, Sarvajeet Singh; TUTEJA, Narendra. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, v. 48, n. 12, p. 909-930, 2010. DOI: 10.1016/j.plaphy.2010.08.016. DOI: https://doi.org/10.1016/j.plaphy.2010.08.016

HASKETT, Jonathan D.; PACHEPSKY, Yakov A.; ACOCK, Basil. Effect of climate and atmospheric change on soybean water stress: a study of Iowa. Ecological Modelling, v. 135, n. 2-3, p. 265-277, 2000. DOI: 10.1016/S0304-3800(00)00369-0. DOI: https://doi.org/10.1016/S0304-3800(00)00369-0

HATFIELD, Jerry L.; DOLD, Christian. Water-use efficiency: advances and challenges in a changing climate. Frontiers in Plant Science, v. 10, p. 103, 2019. DOI: 10.3389/fpls.2019.00103. DOI: https://doi.org/10.3389/fpls.2019.00103

HOFFMANN, Ary A.; MERILÄ, Juha. Heritable variation and evolution under favourable and unfavourable conditions. Trends in Ecology & Evolution, v. 14, n. 3, p. 96-101, 1999. DOI: 10.1016/S0169-5347(99)01595-5. DOI: https://doi.org/10.1016/S0169-5347(99)01595-5

HSIAO, Theodore C.; ACEVEDO, Edmundo. Plant responses to water deficits, water-use efficiency, and drought resistance. Developments in Agricultural and Managed Forest Ecology, v. 1, p. 59-84, 1975. DOI: 10.1016/B978-0-444-41273-7.50012-X. DOI: https://doi.org/10.1016/B978-0-444-41273-7.50012-X

JACQUEMOUD, Stéphane; USTIN, Susan. Leaf optical properties. Cambridge University Press, 2019. Disponível em https://books.google.com.br/books?hl=pt-BR&lr=&id=gNGoDwAAQBAJ&oi=fnd&pg=PR9&dq=Leaf+optical+properties:+A+state+of+the+art.+In&ots=J8uoSNnJtO&sig=xQ5N28H5axInWozuPogp5gunJXk#v=onepage&q=Leaf%20optical%20properties%3A%20A%20state%20of%20the%20art.%20In&f=false. Acesso em: 08.08.2021.

JENKINS, Marion W.; SUGDEN, Steven. Human development report 2006. New York: United Nations Development Programme, 2006. Disponível em https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.422.5099&rep=rep1&type=pdf. Acesso em 20.08.2021.

JONES, Russell et al. Molecular life of plants. Wiley-Blackwell, 2012. Disponível em https://www.cabdirect.org/cabdirect/abstract/20123394670. Acesso em 06.08.2021.

JÚNIOR, George do Nascimento Araújo et al. Estresse hídrico em plantas forrageiras: Uma revisão. Pubvet, v. 13, p. 148, 2018. DOI: 10.31533/pubvet.v13n01a241.1-10. DOI: https://doi.org/10.31533/pubvet.v13n01a241.1-10

KOKALY, Raymond F.; CLARK, Roger N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote sensing of environment, v. 67, n. 3, p. 267-287, 1999. DOI: 10.1016/S0034-4257(98)00084-4. DOI: https://doi.org/10.1016/S0034-4257(98)00084-4

KRAMER, Paul J.; BOYER, John S. Water relations of plants and soils. Academic press, 1995. Disponível em https://books.google.com.br/books?hl=pt-BR&lr=&id=H6aHAwAAQBAJ&oi=fnd&pg=PP1&dq=water+in+the+plants&ots=BYHa33W74G&sig=6zle3RGXiF8qqmqz7flG-93sEUg.

KRISHNA, Gopal et al. Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agricultural water management, v. 213, p. 231-244, 2019. Disponível em <https://www.sciencedirect.com/science/article/pii/S037837741831271X>. DOI: https://doi.org/10.1016/j.agwat.2018.08.029

KRISHNA, Gopal et al. Application of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring. Geocarto International, v. 36, n. 5, p. 481-498, 2021. Disponível em <https://www.tandfonline.com/doi/abs/10.1080/10106049.2019.1618922>. DOI: https://doi.org/10.1080/10106049.2019.1618922

KULKARNI, Samadhan C.; REGE, Priti P. Pixel level fusion techniques for SAR and optical images: A review. Information Fusion, v. 59, p. 13-29, 2020. DOI: 10.1016/j.inffus.2020.01.003. DOI: https://doi.org/10.1016/j.inffus.2020.01.003

LEE, Young-Chul et al. Compositions of Opuntia ficus-indica. Korean Journal of Food Science and Technology, v. 29, n. 5, p. 847-853, 1997. Disponível em https://www.koreascience.or.kr/article/JAKO199703042059884.pdf. Acesso em 17.08.2021.

LI, Daoliang et al. Modern imaging techniques in plant nutrition analysis: A review. Computers and Electronics in Agriculture, v. 174, p. 105459, 2020. DOI: 10.1016/j.compag.2020.105459. DOI: https://doi.org/10.1016/j.compag.2020.105459

MALENOVSKÝ, Zbyněk et al. Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. New phytologist, v. 208, n. 2, p. 608-624, 2015. Disponível em <https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.13524>. DOI: https://doi.org/10.1111/nph.13524

MAIA, Josemir Moura et al. Atividade de enzimas antioxidantes e inibição do crescimento radicular de feijão caupi sob diferentes níveis de salinidade. Acta Botanica Brasilica, v. 26, p. 342-349, 2012. DOI: 10.1590/S0102-33062012000200010. DOI: https://doi.org/10.1590/S0102-33062012000200010

MALLICK, Nirupama; MOHN, Friedrich Helmuth. Reactive oxygen species: response of algal cells. Journal of Plant Physiology, v. 157, n. 2, p. 183-193, 2000. DOI: 10.1016/S0176-1617(00)80189-3. DOI: https://doi.org/10.1016/S0176-1617(00)80189-3

MARENGO, José A.; SOUZA JR, Carlos. Mudanças Climáticas: impactos e cenários para a Amazônia. São Paulo: ALANA, 2018. Disponível em http://www.oamanhaehoje.com.br/assets/pdf/Relatorio_Mudancas_Climaticas-Amazonia.pdf.

MATOS, Fábio Santos. Folha seca: introdução à fisiologia vegetal. Editora Appris, 2020. Disponível em https://books.google.com.br/books?hl=pt-BR&lr=&id=3MPXDwAAQBAJ&oi=fnd&pg=PT172&dq=Folha+seca:+introdu%C3%A7%C3%A3o+%C3%A0+fisiologia+vegetal&ots=r8ImGu-MJX&sig=-XBv3FLKJ6SnqunUe3SMeX5SlkI#v=onepage&q=Folha%20seca%3A%20introdu%C3%A7%C3%A3o%20%C3%A0%20fisiologia%20vegetal&f=false. Acesso em 17.08.2021.

MELO, Hyrandir Cabral de et al. Alterações anatômicas e fisiológicas em Setaria anceps Stapf ex Massey e Paspalum paniculatum L. sob condições de déficit hídrico. Hoehnea, v. 34, p. 145-153, 2007. Disponível em https://www.scielo.br/j/hoehnea/a/CyQQszxg7mCzdCHLP5fCkCz/?format=pdf&lang=pt. Acesso em 21.08.2021. DOI: https://doi.org/10.1590/S2236-89062007000200003

MERWAD, Abdel-Rahman MA; DESOKY, El-Sayed M.; RADY, Mostafa M. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae, v. 228, p. 132-144, 2018. DOI: 10.1016/j.scienta.2017.10.008. DOI: https://doi.org/10.1016/j.scienta.2017.10.008

MITTLER, Ron. Abiotic stress, the field environment and stress combination. Trends in plant science, v. 11, n. 1, p. 15-19, 2006. DOI: 10.1016/j.tplants.2005.11.002. DOI: https://doi.org/10.1016/j.tplants.2005.11.002

MUNNS, Rana. Comparative physiology of salt and water stress. Plant, cell & environment, v. 25, n. 2, p. 239-250, 2002. DOI: 10.1046/j.0016-8025.2001.00808.x. DOI: https://doi.org/10.1046/j.0016-8025.2001.00808.x

MO, Changyeun et al. Detecting drought stress in soybean plants using hyperspectral fluorescence imaging. Journal of Biosystems Engineering, v. 40, n. 4, p. 335-344, 2015. Disponível em <https://www.koreascience.or.kr/article/JAKO201501255363615.pdf>. DOI: https://doi.org/10.5307/JBE.2015.40.4.335

NAHAR, Kamrun et al. Insights into spermine-induced combined high temperature and drought tolerance in mung bean: osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma, v. 254, n. 1, p. 445-460, 2017. DOI: 10.1007/s00709-016-0965-z. DOI: https://doi.org/10.1007/s00709-016-0965-z

NEUMANN, P. Salinity resistance and plant growth revisited. Plant, Cell & Environment, v. 20, n. 9, p. 1193-1198, 1997. DOI: 10.1016/j.envexpbot.2005.12.006. DOI: https://doi.org/10.1046/j.1365-3040.1997.d01-139.x

PANIGRAHI, Niranjan et al. Identifying opportunities to improve management of water stress in banana production. Scientia Horticulturae, v. 276, p. 109735, 2021. DOI: 10.1016/j.scienta.2020.109735. DOI: https://doi.org/10.1016/j.scienta.2020.109735

PACHECO, FERNANDA; LAZZARINI, LUIZ EDUARDO; ALVARENGA, IVAN. METABOLISMO RELACIONADO COM A FISIOLOGIA DOS ESTÔMATOS. ENCICLOPÉDIA BIOSFERA, V. 18, N. 36, 2021. DOI: 10.18677/ENCIBIO_2021B14. DOI: https://doi.org/10.18677/EnciBio_2021B14

PEÑUELAS, J. et al. The reflectance at the 950–970 nm region as an indicator of plant water status. International journal of remote sensing, v. 14, n. 10, p. 1887-1905, 1993. DOI: 10.1080/01431169308954010. DOI: https://doi.org/10.1080/01431169308954010

PIMENTEL, Carlos. A relação da planta com a água. Seropédica: Edur, 2004. DOI: 10.1016/j.envexpbot.2005.12.006. DOI: https://doi.org/10.1016/j.envexpbot.2005.12.006

PIPATSITEE, Piyanan et al. Application of infrared thermography to assess cassava physiology under water deficit condition. Plant Production Science, v. 21, n. 4, p. 398-406, 2018. Disponível em <https://www.tandfonline.com/doi/abs/10.1080/1343943X.2018.1530943>. DOI: https://doi.org/10.1080/1343943X.2018.1530943

POIRIER-POCOVI, Magalie; VOLDER, Astrid; BAILEY, Brian N. Modeling of reference temperatures for calculating crop water stress indices from infrared thermography. Agricultural Water Management, v. 233, p. 106070, 2020. Disponível em <https://www.sciencedirect.com/science/article/pii/S0378377419309011>. DOI: https://doi.org/10.1016/j.agwat.2020.106070

ROCK, Gilles et al. Plant species discrimination using emissive thermal infrared imaging spectroscopy. International journal of applied earth observation and geoinformation, v. 53, p. 16-26, 2016. Disponível em <https://www.sciencedirect.com/science/article/pii/S0303243416301350>. DOI: https://doi.org/10.1016/j.jag.2016.08.005

SARAIVA, Gustavo Francisco; ANDRADE, Regina; SOUZA, Gustavo. Termografia por infravermelho como ferramenta de diagnóstico precoce de estresse hídrico severo em soja. Agrarian Academy, v. 1, n. 02, 2014. Disponível em <http://www.conhecer.org.br/Agrarian%20Academy/2014b/termografia.pdf>. DOI: https://doi.org/10.18677/Agrarian_Academy_2014_037

SCHEPERS, James S. et al. Transmittance and reflectance measurements of cornleaves from plants with different nitrogen and water supply. Journal of plant physiology, v. 148, n. 5, p. 523-529, 1996. DOI: 10.1016/S0176-1617(96)80071-X. DOI: https://doi.org/10.1016/S0176-1617(96)80071-X

SELIM, Abdel-Fattah Hassan; EL-NADY, Mohamed Fathi. Physio-anatomical responses of drought stressed tomato plants to magnetic field. Acta Astronautica, v. 69, n. 7-8, p. 387-396, 2011. DOI: 10.1016/j.actaastro.2011.05.025. DOI: https://doi.org/10.1016/j.actaastro.2011.05.025

SHARMA, Pallavi et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of botany, v. 2012, 2012. DOI: 10.1155/2012/217037. DOI: https://doi.org/10.1155/2012/217037

SPRINGOB, Karin et al. Recent advances in the biosynthesis and accumulation of anthocyanins. Natural product reports, v. 20, n. 3, p. 288-303, 2003. DOI: 10.1039/B109542K. DOI: https://doi.org/10.1039/b109542k

TAIZ, Lincoln; ZEIGER, Eduardo. Fisiologia vegetal. Universitat Jaume I, 2006. Disponível em https://books.google.com.br/books?hl=pt-BR&lr=&id=PpO4DQAAQBAJ&oi=fnd&pg=PR1&dq=Taiz,+L.,+Zeiger+pdf&ots=7RCmyXKSTf&sig=Y3-V0ZHd2e8zUyJ8A8nif3nKGgs. Acesso em 10.08.2021.

TAIZ, Lincoln et al. Fisiologia e desenvolvimento vegetal. Artmed Editora, 2017. Disponível em https://books.google.com.br/books?hl=pt-BR&lr=&id=PpO4DQAAQBAJ&oi=fnd&pg=PR1&dq=taiz+zeiger+2017&ots=7RCntSHQQd&sig=FxhvnnV6sbFQxxPyRe_KH-EE5K0. Acesso em 10.08.2021.

VIEIRA, Elvis Lima et al. Manual de fisiologia vegetal. Edufma, 2010. Disponível em https://books.google.com.br/books?hl=pt-BR&lr=&id=enzO_ItTcvMC&oi=fnd&pg=PA1&dq=Processos+fisiol%C3%B3gicos+como,+crescimento+celular,+fotoss%C3%ADntese+e+a+produtividade+da+cultura+s%C3%A3o+diretamente+influenciados+pelo+potencial+h%C3%ADdrico+da+planta,+normalmente+as+c%C3%A9lulas+vegetais+o+apresentam+entre+0+MPa+ou+menos.+Folhas+bem+hidratadas+aprese&ots=S7iaN_efVb&sig=fj222Zb33fgUr5vcXdWX1VIhwpc. Acesso em 10.08.2021.

ZHEN, Shuyang; VAN IERSEL, Marc W. Far-red light is needed for efficient photochemistry and photosynthesis. Journal of plant physiology, v. 209, p. 115-122, 2017. DOI: 10.1016/j.jplph.2016.12.004. DOI: https://doi.org/10.1016/j.jplph.2016.12.004

Downloads

Publicado

10-10-2022

Como Citar

Alves, R. F., & Putti, F. F. (2022). Use of images for early identification of water stress: REVISÃO BIBLIOGRÁFICA. Revista Brasileira De Engenharia De Biossistemas, 16. https://doi.org/10.18011/bioeng.2022.v16.1114

Edição

Seção

Regular Section