Treatment and bioenergy recovery from livestock wastewater in UASB reactor: novel approaches for engineering projects
DOI:
https://doi.org/10.18011/bioeng.2025.v19.1232Keywords:
Anaerobic digestion, Biogas, Methane, Pollution control, BioenergyAbstract
This study presents an innovative approach for energy recovery and treatment of cattle wastewater, exploring the performance of a UASB reactor operated at 40°C, a condition that has received scant attention in the extant literature. The experiment was conducted using a semi-continuous feeding regime, with hydraulic retention times of 6, 5, 3, and 2 days, and organic loading rates of 4, 5, 7, and 11 kg COD m-3 d-1. The range of organic matter removal for total COD was 60% to 80%, and for soluble COD, it was 50% to 75%. These values resulted in methane yields ranging from 0.20 to 0.34 m³ CH4 per kilogram of total COD removed and from 0.4 to 0.5 m³ CH4 per kilogram of soluble COD removed. The findings underscore the efficacy of operating the reactor under these conditions, not only in achieving substantial biogas production but also in ensuring the efficient removal of organic matter. This reinforces the potential of the processes as a sustainable and effective alternative for treating effluents with high pollutant loads, thereby combining environmental mitigation and clean energy generation.
Downloads
References
Abubakar, B. S. U. I., & Nasir, I. (2012). Anaerobic digestion of cow dung for biogas production. ARPN Journal of Engineering and Applied Sciences, 7(2).
Castrillón, L., Vázquez, I., Marañón, E., & Sastre, H. (2002). Anaerobic thermophilic treatment of cattle manure in UASB reactors. Waste Management & Research, 20(4), 350-356. https://doi.org/10.1177/0734247x0202000406
Comino, E., Rosso, M., & Riggio, V. (2009). Development of a pilot scale anaerobic digester for biogas production from cow manure and whey mix. Bioresource Technology, 100(21), 5072-5078. https://doi.org/https://doi.org/10.1016/j.biortech.2009.05.059
Dareioti, M. A., Dokianakis, S. N., Stamatelatou, K., Zafiri, C., & Kornaros, M. (2010). Exploitation of olive mill wastewater and liquid cow manure for biogas production. Waste Management, 30(10), 1841-1848. https://doi.org/https://doi.org/10.1016/j.wasman.2010.02.035
Demirer, G. N., & Chen, S. (2005). Two-phase anaerobic digestion of unscreened dairy manure. Process Biochemistry, 40(11), 3542-3549. https://doi.org/https://doi.org/10.1016/j.procbio.2005.03.062
Dias, T., Fragoso, R., & Duarte, E. (2014). Anaerobic co-digestion of dairy cattle manure and pear waste. Bioresource Technology, 164, 420-423. https://doi.org/https://doi.org/10.1016/j.biortech.2014.04.110
El Shahawy, A., Mohamed, A., El-Shatoury, S., Ahmed, D., Aboulfotoh, A., Dohdoh, A., & Gough, H. L. (2024). Using phragmites australis biochar bio-augmented with actinomycetes for enhancing UASB reactor performance: A field study. Journal of Water Process Engineering, 68, 106461. https://doi.org/https://doi.org/10.1016/j.jwpe.2024.106461
El Hammoudani, Y., Haboubi, K., Bourjila, A., Achoukhi, I., Benaissa, C., Faiz, H., Touzani, A., Moudou, M., Esskifati, M., El Boudammoussi, M., El Ahmadi, K., Haboubi, C., Dira, I., El Abdouni, A., & Dimane, F. (2024). Assessing the impact of organic and inorganic micropollutants released from a wastewater treatment plant on humans and aquatic environment, Al-Hoceima city, Morocco. Toxicology Reports, 13, 101699. https://doi.org/https://doi.org/10.1016/j.toxrep.2024.101699
Ferrer, I., Garfí, M., Uggetti, E., Ferrer-Martí, L., Calderon, A., & Velo, E. (2011). Biogas production in low-cost household digesters at the Peruvian Andes. Biomass and Bioenergy, 35(5), 1668-1674. https://doi.org/https://doi.org/10.1016/j.biombioe.2010.12.036
Gerardi, M. H. (2003). The microbiology of anaerobic digesters. John Wiley & Sons. https://doi.org/10.1002/0471468967
Grady, C. P. L., Daigger, G. T., & Lim, H. C. (1999). Biological wastewater treatment (2nd ed., revised and expanded). New York: Marcel Dekker.
Jensen, P. D., Mehta, C. M., Carney, C., & Batstone, D. J. (2016). Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion. Waste Management, 51, 72-80. https://doi.org/https://doi.org/10.1016/j.wasman.2016.02.039
Kothari, R., Pandey, A. K., Kumar, S., Tyagi, V. V., & Tyagi, S. K. (2014). Different aspects of dry anaerobic digestion for bio-energy: An overview. Renewable and Sustainable Energy Reviews, 39, 174-195. https://doi.org/https://doi.org/10.1016/j.rser.2014.07.011
Lomeu, A. A., de Oliveira Moreira, O. B., de Oliveira, M. A. L., & de Mendonça, H. V. (2023). Applying Ozone in Cattle Wastewater to Maximize Lipid Production in Microalgae Biomass. BioEnergy Research, 16(4), 2489-2501. https://doi.org/10.1007/s12155-023-10564-z
Marañón, E., Castrillón, L., Fernández, J. J., Fernández, Y., Peláez, A. I., & Sánchez, J. (2006). Anaerobic Mesophilic Treatment of Cattle Manure in an Upflow Anaerobic Sludge Blanket Reactor with Prior Pasteurization. Journal of the Air & Waste Management Association, 56(2), 137–143. https://doi.org/10.1080/10473289.2006.10464448
Marañón, E., Castrillón, L., Vázquez, I., & Sastre, H. (2001). The influence of hydraulic residence time on the treatment of cattle manure in UASB reactors. Waste management & Research: the journal of the International Solid Wastes and Public Cleansing Association, ISWA, 19(5), 436–441. https://doi.org/10.1177/0734242X0101900508
Mello Mattos, C. de, dos Santos, M. S., Santana, J., de Carvalho, D. F., Massache, A., Zonta, E., Boas, R. V., Lucchetti, L., Mendes, M., & de Mendonça, H. V. (2024). Pollution control and biodiesel production with microalgae: new perspectives on the use of flat panel photobioreactors regarding variation in volume application rate. Environmental Science and Pollution Research, 31(49), 58973-58987. https://doi.org/10.1007/s11356-024-35024-9
Mendonça, H. V. de, Otenio, M. H., & Paula, V. R. de. (2021). Digestão anaeróbia para produção de energia renovável. Revista Em Agronegócio E Meio Ambiente, 14(3), 793–805. https://doi.org/10.17765/2176-9168.2021v14n3e7667
Miah, M. S., Hossain, M. S., Ali, M. S., Shahid, S. B., Sharmin, S., & Zakir, H. M. (2025). Textile effluent treatment in a pilot-scale UASB bioreactor followed by biofilter and aerobic processes. Case Studies in Chemical and Environmental Engineering, 11, 101075. https://doi.org/https://doi.org/10.1016/j.cscee.2024.101075
Musa, M. A., Idrus, S., Harun, M. R., Tuan Mohd Marzuki, T. F., & Abdul Wahab, A. M. (2020). A Comparative Study of Biogas Production from Cattle Slaughterhouse Wastewater Using Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors. International Journal of Environmental Research and Public Health, 17(1), 283. https://doi.org/10.3390/ijerph17010283
Nasir, I. M., Mohd Ghazi, T. I., & Omar, R. (2012). Anaerobic digestion technology in livestock manure treatment for biogas production: A review. Engineering in Life Sciences, 12(3), 258-269. https://doi.org/https://doi.org/10.1002/elsc.201100150
Noorollahi, Y., Kheirrouz, M., Asl, H. F., Youse, H., & Hajinezhad, A. (2015). Biogas production potential from livestock manure in Iran. Renewable and Sustainable Energy Reviews, 50, 748–754. https://doi.org/10.1016/j.rser.2015.04.190
Omar, R., Idaty, T., Ghazi, M., Azlina, W. A. K. G., & Ghani, K. A. (2008). Anaerobic treatment of cattle manure for biogas production. Biomass and Bioenergy, 32(1), 3–9.
Resende, J. A., Godon, J. J., Bonnafous, A., Arcuri, P. B., Silva, V. L., Otenio, M. H., & Diniz, C. G. (2016). Seasonal variation on microbial community and methane production during anaerobic digestion of cattle manure in Brazil. Microbial Ecology, 71(3), 735–746. https://doi.org/10.1007/s00248-015-0647-y
Rico, C., Rico, J. L., Muñoz, N., Gómez, B., & Monzón, I. T. (2011). Effect of mixing on biogas production during mesophilic anaerobic digestion of screened dairy manure in pilot plant. Engineering in Life Sciences, 11(5), 476–481. https://doi.org/10.1002/elsc.201100010
Sung, S., & Santha, H. (2003). Performance of temperature-phased anaerobic digestion (TPAD) system treating dairy cattle wastes. Water research, 37(7), 1628–1636. https://doi.org/10.1016/S0043-1354(02)00498-0
Vieira de Mendonça, H., & Silva dos Santos, M. (2022). Co-digestion of deep bedding and wastewater from pig farming: A new strategy for bioenergy increase and biofertilizer recovery. Journal of Environmental Management, 304, 114310. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.114310
Wen, Z., Liao, W., & Chen, S. (2004). Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresource Technology, 91(1), 31–39. https://doi.org/10.1016/S0960-8524(03)00166-4
Witarsa, F., & Lansing, S. (2015). Quantifying methane production from psychrophilic anaerobic digestion of separated and unseparated dairy manure. Ecological Engineering, 78, 95–100. https://doi.org/10.1016/j.ecoleng.2014.05.031
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
By publishing in this journal, authors agree to the following terms:
a) Authors retain copyright and grant the journal the right of first publication. The work is simultaneously licensed under the Creative Commons Attribution License, which permits sharing and adaptation of the work with appropriate credit to the authors and the journal.
b) Authors may enter into separate, additional agreements for non-exclusive distribution of the published version of the work (e.g., posting to an institutional repository or inclusion in a book), provided that proper credit is given to the original publication in this journal.