MONITORAMENTO E REMOÇÃO DE METAIS EM UM REATOR ANAERÓBIO APLICADO AO TRATAMENTO DE DRENAGEM ÁCIDA DE MINA

Autores

  • L. N. M. Yabuki
  • E. W. Nogueira
  • M. H. R. Z. Damianovic
  • A. A. Menegário
  • M. L. Garcia

DOI:

https://doi.org/10.18011/bioeng2020v14n4p389-401

Palavras-chave:

Drenagem ácida de mina (DAM), Tratamento biológico, Remoção de metais

Resumo

Uma forma eficiente de tratar efluentes provindos de drenagem ácida de mina (DAM), frente aos tratamentos convencionais de neutralização da acidez, é por meio da aplicação de processos biológicos anaeróbios que utilizam bactérias redutoras de sulfato (BRS) apresentando remoção de sulfato, alcalinização do meio e precipitação de metais. O presente trabalho teve como objetivo o monitoramento da concentração total dos metais Co, Cu, Fe, Mn, Mo, Ni, Se, V, W e Zn e a avaliação das respectivas eficiências de remoção destes metais em um reator de leito fixo-estruturado e fluxo descendente (DFSBR), utilizado para tratar efluentes oriundos de DAM sintética rica em sulfato. A digestão anaeróbia empregada para o tratamento de DAM obteve um elevado desempenho com eficiências médias de remoção, nas Fases de II a IV, de 92 ± 4, 87 ± 8, 71 ± 21, 61 ± 24, 92 ± 4 e 86 ± 8 para Co, Cu, Fe, Mn, Ni e Zn, respectivamente. O tratamento anaeróbico de DAM pelo reator DFSBR revela-se como uma alternativa promissora para a remoção de metais, além da redução de sulfato e elevação do pH, de acordo com as condições descritas neste estudo, e uma opção promissora e complementar para a remoção de manganês, comumente considerado de difícil remoção em DAMs reais, empregando processos físico-químicos convencionais.

Downloads

Não há dados estatísticos.

Referências

AKCIL, A.; KOLDAS, S. Acid mine drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, v. 14: 1139-1145, 2006.

AMERICAN PUBLIC HEALTH ASSOCIATION (APHA); AMERICAN WATER WORKS ASSOCIATION (AWWA); WATER ENVIRONMENT FEDERATION (WEF); EATON, A.D. Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington: APHA/AWWA/WEF, 2005.

AUBÉ, B.; ZINCK, J. Lime treatment of acid mine drainage in Canada. In: Juliano, P.B.; Paulo, S.M.S.; Dixon, B.; Bryan, Tisch (Eds.). Brazil-Canada Seminar on Mine Rehabilitation Technological Innovations. Rio de Janeiro: Desktop Publishing, 2003.

BAKER, B. J.; BANFIELD, J. F. Microbial communities in acid mine drainage. FEMS Microbiology Ecology, v. 44: 139-152, 2003.

BARBOSA, L. P.; COSTA, P. F.; BERTOLINO, S. M.; SILVA, J. C. C.; GUERRA-SÁ, R.; LEÃO, V. A.; TEIXEIRA, M. C. Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio. World Journal of Microbiology and Biotechnology, v. 30: 2171-2180, 2014.

BEKMEZCI, O. K.; UCAR, D.; KAKSONEN, A. H.; SAHINKAYA, E. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. Journal of Hazardous Materials, v. 189(3): 670-676, 2011.

BENSON, N. U.; ANAKE, W. U.; OLANREWAJU, I. O. Analytical Relevance of Trace Metal Speciation in Environmental and Biophysicochemical Systems, American Journal of Analytical Chemistry, v. 4: 633–641, 2013.

BLOWES, D. W.; PTACEK, J.; LAMBOR, J. L.; WEISENER, C. G. The geochemistry

of acid mine drainage. In: HOLLAND, H. D.; TUREKIAN, K. K. Treatise on geochemistry. Amsterdan: Elsevier B.V., v. 9: 149-204, 2003.

BRASIL. Ministério do Meio Ambiente. Conselho Nacional de Meio Ambiente (CONAMA). Resolução nº 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes. Diário Oficial da União, Brasília, DF, 13 mai. 2011. Disponível em: http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646. Acesso em 09 Out. 2020.

BUSETTI, F.; BADOER, S.; CUOMO, M., RUBINO, B.; TRAVERSO, P. Occurrence and Removal of Potentially Toxic Metals and Heavy Metals in the Wastewater Treatment Plant of Fusina (Venice, Italy). Industrial & Engineering Chemistry Research, v. 44: 9264-9272, 2005.

CAMPANER, V. P.; SILVA, W. L. Processos físico químicos em drenagem ácida de minas em mineração de carvão do sul do Brasil. Química Nova, v. 32: 146-152, 2009.

CAMPANER, V. P., LUIZ-SILVA, W.; MACHADO, W. (2014). Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil. Anais da Academia Brasileira de Ciências, v. 86(2):539-554, 2014.

CAMPBELL, P. G. C. Interactions between trace metals and organisms: A critique of the free-ion activity model. In: Tessier, A.; Turner, D. (Eds.) Metal Speciation and Bioavailability in Aquatic Systems. Chichester (UK): J. Wiley & Sons, 1995.

CÁNOVAS, C. R.; RIERA, J.; CARRERO, S.; OLÍAS, M. Dissolved and particulate metal fluxes in an AMD-affected stream under different hydrological conditions: The Odiel River (SW Spain). Catena, v. 165: 414–424, 2018.

CASTRO NETO, E. S.; AGUIAR, A. B. S.; RODRIGUEZ, R. P.; SANCINETTI, G. P. Acid Mine Drainage Treatment and Metal Removal based on a Biological Sulfate-Reducing Process. Brazilian Journal of Chemical Engineering, v. 35(2): 543-552, 2018.

CHERNICHARO, C. A. L. Reatores anaeróbios. Princípios do tratamento biológico de águas residuárias. 2ª ed. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental-Universidade Federal de Minas Gerais, 1997.

CHIPASA, K. B. Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Management, v. 23: 135-143, 2003.

Conselho Estadual Do Meio Ambiente. (CONSEMA). Resolução nº 355 de 19 de julho de 2017. Critérios e padrões de emissão de efluentes líquidos para as fontes geradoras que lancem seus efluentes em águas superficiais no Estado do Rio Grande do Sul. Disponível em: https://www.sema.rs.gov.br/upload/arquivos/201707/19110149-355-2017-criterios-e-padroes-de-emissao-de-efluentes-liquidos.pdf. Acesso em: 09 out. 2020.

DIMPE, K. M.; NGILA, J. C.; MABUBA, N.; NOMGONGO, P. N. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge. Physics and Chemistry of the Earth, v. 76-78: 42-48, 2014.

DAMIANOVIC, M. H. R. Z.; FORESTI, E. Anaerobic degradation of synthetic wastewaters at different levels of sulfate and COD/Sulfate ratios in horizontal-flow anaerobic reactors (HAIB). Environmental Engineering Science, v. 24(3): 383-393, 2007.

FALAGÁN, C.; GRAIL, B. M.; JOHNSON, D. B. New approaches for extracting and recovering metals from mine tailings. Minerals Engineering, v. 106: 71–78, 2017.

GALLEGOS-GARCIA, M.; CELIS, L. B.; RANGEL-MÉNDEZ, R.; RAZO-FLORES, E. Precipitation and recovery of metal sulfides from metal containing acidic wastewater in a sulfidogenic down-flow fluidized bed reactor. Biotechnology and Bioengineering, v. 102(1): 91-99, 2009.

GARCIA, C.; MORENO, D. A.; BALLESTER, A.; BLÀZQUZ, M. L.; GONZÁLEZ, F. Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Minerals Engineering, v. 14(9): 997-1008, 2001.

GINÉ-ROSIAS, M. F. Espectrometria de Emissão Atômica com Plasma Acoplado Indutivamente (ICP-AES), Piracicaba: CENA, 1998.

GODOI, L. A. G.; FORESTI, E.; DAMIANOVIC, M. H. R. Z. Down-flow fixed-structured bed reactor: An innovative reactor configuration applied to acid mine drainage treatment and metal recovery. Journal of Environmental Management, v. 197: 597-604, 2017.

HARRIS, D. C. Dissolving Samples for Analysis, in: Quantitative Chemical Analysis. New York: W. H. Freeman and Company, 2007.

HAO, T.; XIANG, P.; MACKEY, H. R.; CHI, K.; LU, H.; CHUI, H.; VAN LOOSDRECHT, M. C. M.; CHEN, G-H. A review of biological sulfate conversions in wastewater treatment. Water Research, v. 65: 1-21, 2014.

HU, Y.; JING, Z.; SUDO, Y.; NIU, Q.; DU, J.; WU, J.; LI, Y. Y. Effect of influent COD/SO42- Ratios on UASB treatment of a synthetic sulfate containing wastewater. Chemosphere, v. 130: 24-33, 2015.

JOHNSON, D. B.; HALLBERG, K. B. Acid mine drainage remediation options: a review. Science of the Total Environment, v. 338: 3-14, 2005.

KAKSONEN, A. H.; PUHAKKA, J. A. Sulfate reduction-based process for the treatment of acid mine drainage and the recovery of metals. Engineering in Life Science, v. 7(6): 541-564, 2007.

KEFENI, K. K.; MSAGATI, T. A. M.; MAMBA, B. B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production, v. 151: 475–493, 2017.

KRÖPFELOVÁ, L.; VYMAZAL, J.; SVEHLA, J.; STÍCHOVÁ, J. Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environmental Pollution, v. 157: 1186–1194, 2009.

KRUG, F. J.; ROCHA, F. R. P. Métodos de preparo de amostras para análise elementar. (Orgs.), São Paulo: EditSBQ, v. 1, 2016.

KURNIAWAN, T. A.; CHAN, G. Y. S.; LO, W. H.; BABEL, S. 2006. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, v. 118: 83-98, 2006.

LEWIS, A. E. Review of metal sulphide precipitation. Hydrometallurgy, v. 104, p. 222-234, 2010.

MELLO, J. W. V.; DUARTE, H. A.; LADEIRA, A. C. Q. Origem e Controle do Fenômeno Drenagem Ácida de Mina. Cadernos Temáticos de Química Nova na Escola, v. 8: 24-29, 2014.

NOGUEIRA, E. W.; GODOI, L. A. G.; BRUCHA, G.; DAMIANOVIC, M. H. R. Z. Tratamento de drenagem ácida de minas sintética utilizando reator anaeróbio de leito fixo-estruturado e fluxo descendente (DFSBR). In: Anais II Seminário do Projeto Temático Aplicação do conceito biorrefinaria a estações tratamento biológico águas residuárias o controle da poluição ambiental aliado à recuperação matéria e energia, São Carlos/SP, 2018, p. 346–354.

OLIVEIRA, A. S.; BOCIO, A.; TREVILATO, T. M. B.; TAKAYANAGUI, A. M. M.; DOMINGO, J. L.; SEGURA-MUÑOZ, S. I. Heavy Metals in Untreated/Treated Urban Effluent and Sludge from a Biological Wastewater Treatment Plant. Environmental Science and Pollution Research, v. 14(7): 483-489, 2007.

SÁNCHEZ‐ANDREA, I.; STAMS, A. J. M.; AMILS, R.; SANZ, J. L. Enrichment and isolation of acidophilic sulfate‐reducing bacteria from Tinto River sediments. Environmental Microbiology Reports, v. 5(5): 672–678, 2013.

SANTOS, A. L.; JOHNSON, D. B. The effects of temperature and pH on the kinetics of an acidophilic sulfidogenic bioreactor and indigenous microbial communities. Hydrometallurgy, v. 168: 116–120, 2017.

SAHINKAYA, E.; GUNGOR, M. Comparison of sulfidogenic up-flow and down-flow fluidized-bed reactors for the biotreatment of acidic metal-containing wastewater. Bioresource Technology, v. 101: 9508-9514, 2010.

SHEORAN, A. S.; SHEORAN, V.; CHOUDHARY, R. P. Bioremediation of acid- rock drainage by sulfate-reducing prokaryotes: A review. Minerals Engineering, v. 23: 1073-1100, 2010.

UCAR, D.; BEKMEZCI, O. K.; KAKSONEN, A. H.; SAHINKAYA, E. Sequential precipitation of Cu and Fe using a three-stage sulfidogenic fluidized-bed reactor system. Minerals Engineering, v. 24(11): 1100-1105, 2011.

ÃœSTÃœN, G. E. Occurrence and removal of metals in urban wastewater treatment plants. Journal of Hazardous Materials, v. 172: 833–838, 2009.

DE LA VARGA, D.; DÍAZ, M.A.; RUIZ, I.; SOTO, M. Heavy metal removal in an UASB-CW system treating municipal wastewater. Chemosphere, v. 93: 1317-1323, 2013.

VILELA, R. S.; DAMIANOVIC, M. H. R. Z.; FORESTI, E. Removing organic matter from sulfate-rich wastewater via sulfidogenic and methanogenic pathways. Water Science & Technology, v. 69(8): 1669-1675, 2014.

Yoo, K.; Hiroyoshi, N.; Tsunekawa, M. Removal of Mn Ions by Biological Co-precipitation of Fe Ions, Geosystem Engineering, v. 13(3): p. 91-96, 2010.

ZHANG, C. Fundamentals of Environmental Sampling and Analysis, New Jersey: Wiley & Sons, 2007.

Downloads

Publicado

31-12-2020

Como Citar

Yabuki, L. N. M., Nogueira, E. W., Damianovic, M. H. R. Z., Menegário, A. A., & Garcia, M. L. (2020). MONITORAMENTO E REMOÇÃO DE METAIS EM UM REATOR ANAERÓBIO APLICADO AO TRATAMENTO DE DRENAGEM ÁCIDA DE MINA. Revista Brasileira De Engenharia De Biossistemas, 14(4), 389–401. https://doi.org/10.18011/bioeng2020v14n4p389-401

Edição

Seção

Regular Section