Energy consumption reduction of a center-pivot with the use of a variable-frequency drive

Autores

  • Isabela Alvarenga Almeida Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil.
  • Alberto Colombo Departament of Water Resources, Federal University of Lavras - UFLA, Lavras, MG, Brazil.
  • Ana Cláudia Sátiro Araújo Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil.
  • Rafael Alvarenga Almeida Institute of Science, Engineering and Technology, Mucuri Campus, Federal University of Jequitinhonha and Mucuri Valleys - UFVJM, Teófilo Otoni, MG, Brazil. https://orcid.org/0000-0002-3828-7305
  • Jéfferson de Oliveira Costa Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil. https://orcid.org/0000-0002-5387-7880
  • Carlos Alberto Quiloango-Chimarro Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, SP, Brazil. https://orcid.org/0000-0002-2649-8105

DOI:

https://doi.org/10.18011/bioeng.2022.v16.1096

Palavras-chave:

Irrigation, Electric Power, Simulations

Resumo

Pressure demand of a center-pivot can be controlled by variable frequency drives during irrigation system operations, leading to a rational use of electrical energy. However, numerous studies encountered problems due to the lack of field data to perform the simulations. The objective of this study was to simulate the reduction of the average value of the active electrical power required to drive the pumping unit of a center-pivot irrigation system by controlling the rotational speed through a frequency inverter. The simulation was conducted considering a complete rotation of the lateral line of a central pivot, installed in an area of 70-ha, in the municipality of Formiga-MG. The simulation demonstrated the possibility of reducing the active electrical power required for the pivot pump by 18%, from an average of 131 to 107 kW. For 1300 pumping hours per year, the investment's payback time would be two and four years for the highest (R$ 0.48 kWh-1) and lowest energy cost (R$ 0.32 kWh-1), respectively. Results suggest that irrigated areas by center-pivot with variations of topographic altitude require technical-economic evaluations for using frequency inverters.

Downloads

Não há dados estatísticos.

Referências

Allen, R. G. (1996). Relating the Hazen-Williams and Darcy-Weisbach friction loss equations for pressurized irrigation. Applied Engineering in Agriculture, 12(6), 685-693.

Almeida, A. N., Coelho, R. D., Farias, A. J., Monteiro, R. O., & Costa, J. O. (2016). Comparative study of energy costs in irrigation according to the new Brazilian electricity tariff model. Engenharia Agrícola, 36, 902-916. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n5p902-916/2016

Ayrimoraes, S. (2020). Atlas irrigação (2nd ed.). Agência Nacional de Águas (ANA).

Azevedo, E. B. de. (2003). Viabilidade do uso do inversor de freqüência em sistema de irrigação do tipo pivô central. Universidade Federal de Lavras–UFLA.

Brar, D., Kranz, W. L., Lo, T., Irmak, S. & Martin, D. L. (2017). Energy conservation using variable-frequency drives for center-pivot irrigation: Standard systems. Transactions of the ASABE, 60(1), 95–106. https://doi.org/10.13031/trans.11683

Campana, S., Oliveira Filho, D. & Soares, A. A. (2000). Inversores de freqüência: uma alternativa para racionalização do uso da energia elétrica em sistemas de irrigação pivô central. Proceedings of the 3. Encontro de Energia No Meio Rural.

CEMIG. (2015). Annual sustainability report 2015-Cemig. cemig.org.br

Coelho, R. D., Lizcano, J. V., da Silva Barros, T. H., da Silva Barbosa, F., Leal, D. P. V., da Costa Santos, L., Ribeiro, N. L., Júnior, E. F. F. & Martin, D. L. (2019). Effect of water stress on renewable energy from sugarcane biomass. Renewable and Sustainable Energy Reviews, 103(January), 399–407. https://doi.org/10.1016/j.rser.2018.12.025

Comas, L. H., Trout, T. J., DeJonge, K. C., Zhang, H. & Gleason, S. M. (2019). Water productivity under strategic growth stage-based deficit irrigation in maize. Agricultural Water Management, 212, 433–440. https://doi.org/10.1016/j.agwat.2018.07.015

Costa, J. O., Coelho, R. D., Almeida, A. N., Farias, A. J., & Monteiro, R. O. C. (2017). Energia elétrica e irrigação no Brasil: impacto das bandeiras tarifárias. Item - Irrigação e Tecnologia Moderna, 110-111-112, 52-55.

Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/science.aaz7614

King, B. A. & Wall, R. W. (2000). Distributed instrumentation for optimum control of variable speed electric pumping plants with center pivots. Applied Engineering in Agriculture, 16(1), 45.

Lima, A. dos S. (2009). Uso de inversor de frequência em sistema de irrigação do tipo pivô central e seu efeito na lâmina e uniformidade de distribuição de água. Universidade Estadual Paulista (UNESP).

Moraes, M. J., Oliveira Filho, D., Mantovani, E. C., Monteiro, P., Mendes, A. L. C. & Damião, J. H. A. C. (2014). Automação em sistema de irrigação tipo pivô central para economia de energia elétrica. Engenharia Agrícola, 34(6), 1075–1088.

Pereira, P. H. C., Colombo, A., Rabelo, G. F. & de Alcântara, D. (2013). O uso da engenharia de automação na redução do consume de energia elétrica em um sistema de irrigação por pivô central. Procedings Simpósio Brasileiro de Automação Inteligente, Fortaleza, 6p.

Ruggiero, M. A. G. & Lopes, V. L. da R. (1997). Cálculo numérico: aspectos teóricos e computacionais. Makron Books do Brasil.

Downloads

Publicado

04-07-2022

Como Citar

Almeida, I. A., Colombo, A. ., Araújo, A. C. S., Almeida, R. A., Costa, J. de O., & Quiloango-Chimarro, C. A. (2022). Energy consumption reduction of a center-pivot with the use of a variable-frequency drive. Revista Brasileira De Engenharia De Biossistemas, 16. https://doi.org/10.18011/bioeng.2022.v16.1096

Edição

Seção

INOVAGRI Meeting 2021