Broiler production efficiency: An analysis using thermal infrared images

Authors

  • Eldelita Franco Department of Production Engineering, Santo Agostinho University Center – UNIFSA, Teresina, PI, Brazil.
  • Irenilza de Alencar Nääs Postgraduate Program in Production Engineering, UNIP, São Paulo, SP, Brasil.

DOI:

https://doi.org/10.18011/bioeng.2022.v16.1102

Keywords:

Thermal Image, Surface Temperature, Performance, Poultry Production

Abstract

The study objective was to evaluate the efficiency of using technology focusing on the thermal comfort of broilers in two poultry houses located in the metropolitan region of Teresina, Northeast Brazil, with different technological levels. One level uses cooling control of the housing and adopts high management of good production practices (Tech 1), while the second (Tech 2) was considered to use deficient technology during production. We analyzed the birds' surface temperature and the environment using infrared surface temperature data. Data were collected at a mean distance of 1 m from the birds using an infrared camera to construct the thermograms on the targets (broilers and surroundings). Data were processed using thermograms, and Boxplot graphs were built. It was found that broilers housed on the farm with higher environmental control (Tech1) obtained a better feed conversion and had more significant weight gain and greater profitability. This indicates that the greater the investment to mitigate heat stress, the better the producer's economic performance in this activity.

Downloads

Download data is not yet available.

References

ABPA. Associação Brasileira de Proteína Animal. (2020). Relatório Anual: 2020. Retrieved from https://abpa-br.org/wp-content/uploads/2020/05/abpa_relatorio_anual_2020_portugues_web.pdf. Accessed 16 February 2021.

Abreu, V. M. N. & De Abreu, P. G. (2011). Os desafios da ambiência sobre os sistemas de aves no Brasil. Revista Brasileira de Zootecnia, 40, 1-14.

Armstrong, D.G., Lavery, L. A., Liswood, P. J., Todd, W. F., Tredwell, J. A. (1997). Infrared dermal thermometry for the high-risk diabetic foot. Physical Therapy. 77(2), 169-175. https://doi.org/10.1093/ptj/77.2.169

Baracho, M.S., Nääs, I.A, Nascimento, G.R., Cassiano, J. A., Oliveira, K.S. (2011). Surface temperature distribution in broiler houses. Revista Brasileira Ciência Avícola, 13(3), 177-182, https://doi.org/10.1590/S1516-635X2011000300003.

Barbosa, R. C., Dalólio, F.C., Amorim, M.L., Silva, J.R. da, Gonzaga, D.A. (2017). Análise de viabilidade econômica de sistemas de aquecimento de instalações agropecuárias para criação de frangos de corte. Revista Engenharia na Agricultura-REVENG, 25, 212-222. https://doi.org/10.13083/reveng.v25i3.721.

Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., Greenough, W. T. (1990). Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the USA. 87, 5568-5572. https://doi.org/10.1073/pnas.87.14.5568

Bouzida, N., Bendada, A., Maldague, X. P. (2009) Visualization of body thermoregulation by infrared imaging. Journal of Thermal Biology, 34(3), 120-126. https://doi.org/10.1016/j.jtherbio.2008.11.008

Cangara, Ö, Leroy, T., Guarino, M., Vranken, E., Fallon, R., Lenehan, J., Meed, J., Berckmans, D. (2008). Automatic real-time monitoring of locomotion and posture behaviour of pregnant cows prior to calving using online image analysis. 64(1), 53-60. https://doi.org/10.1016/j.compag.2008.05.014

Cordeiro, M. B., Tinôco, I. F. F., Silva, J. N., Vigoderis, R. B., Pinto, F. A. C., Cecon, P. R. (2010). Conforto térmico e desempenho de pintos de corte submetidos a diferentes sistemas de aquecimento no período de inverno. Revista Brasileira de Zootecnia, 39(1):217-224. https://doi.org/10.1590/S1516-35982010000100029

Curi, T. M. R. de C., Conti, D., Vercellino, R. do A., Massari, J. M., Moura, D. J. de, Souza, Z. M. de, Montanari, R. (2017). Positioning of sensors for control of ventilation systems in broiler houses: a case study. Scientia Agricola. 74(2), 101-109. https://doi.org/10.1590/1678-992X-2015-0369

Dalólio, F. S., Moreira, J., Coelho, D. J. de R., Souza, C. de F. (2016). Caracterização Bioclimática de um Galpão Experimental de Criação de Frangos de Corte na Região de Diamantina-MG. Revista Engenharia na Agricultura-REVENG, 24(1), 22-31. https://doi.org/10.13083/reveng.v24i1.648

EMBRAPA. (2016). Sistemas de Produção de Frangos de Corte: avaliação do desempenho do lote. 2013. Retrieved from: https://www.spo.cnptia.embrapa.br/conteudo?p_p_id=conteudoportlet_WAR_sistemasdeproducaolf6_1ga1ceportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&p_r_p_-76293187_sistemaProducaoId=5102&p_r_p_-996514994_topicoId=5537#

Franco E.A.P., de A. M. Brandão L., Luz J.A.A., Gonçalves K.L.F., de A. Nääs I. (2019). Broiler Meat Production in Piaui State: A Case Study. In: Ameri F., Stecke K., von Cieminski G., Kiritsis D. (eds) Advances in Production Management Systems. Production Management for the Factory of the Future. APMS 2019. IFIP Advances in Information and Communication Technology, vol 566. Springer, Cham. https://doi.org/10.1007/978-3-030-30000-5_15

Gábor, G, Sasser, R. G., Kastelic, J.P., Coulter, G.H., Falkay, G., Mézes, M., Bozó, S., Völgyi-Csík, J., Bárány, I., Szász, F. Jr. (1998). Morphologic, endocrine and thermographic measurements of testicles in comparison with semen characteristics in mature Holstein-Friesian breeding bulls. Animal Reproduction Science. 51(3), 215-224. https://doi.org/10.1016/s0378-4320(98)00077-3

Gillespie, J.; Nehring, R.; Hallahan, C. (2017). New versus old broiler housing technology: Which leads to greater profit?. Journal of Applied Poultry Research, 26(1), 72-83. https://doi.org/10.3382/japr/pfw047

Giloh, M., Shinder, D., Yahav, S. (2012). Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory. Poultry Science, 91(1), 175-188. https://doi.org/10.3382/ps.2011-01497

Graf von Schweinitz, D. Thermographic diagnostics in equine back pain. (1999). Veterinary Clinics of North America: Equine Practice. 15(1), 161-77. https://doi.org/10.1016/s0749-0739(17)30170-0

Halachmi, I., Guarino, M., Bewley. J., Pastell, M. (2019). Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annual Review of Animal Biosciences. 403-425, 7. http;//www.annualreviews.org/doi/abs/10.1146/annurev-animal-020518-114851

Iyasere, O.S, Bateson, M., Beard, A.P., Guy, J.H. (2021). Which factor is more important: Intensity or duration of episodic heat stress on broiler chickens?. Journal of Thermal Biology, 99. https://doi.org/10.1016/j.jtherbio.2021.102981.

Kang, S., Kim, D.-H., Lee, S., Lee, T., Lee, K.-W., Chang, H.-H., Moon, B., Ayasan, T., & Choi, Y.-H. (2020). An Acute, Rather Than Progressive, Increase in Temperature-Humidity Index Has Severe Effects on Mortality in Laying Hens. Frontiers in Veterinary Science. 7, 853. https://doi.org/10.3389/fvets.2020.568093

Kyung-Woo L., Da-Hye, K., Yoo-Kyung, L., Sung-Dae, L., Sang-Ho, K., Sang-Rak, L., Hong-Gu, L. (2020). Changes in Production Parameters, Egg Qualities, Fecal Volatile Fatty Acids, Nutrient Digestibility, and Plasma Parameters in Laying Hens Exposed to Ambient Temperature. Frontiers in Veterinary Science. 7, 412. https://doi.org/10.3389/fvets.2020.00412

Kyung-Woo, L., Joris, M., Yang-Ho, C. (2021). Editorial: Impact of Climate Change on Poultry Metabolism. Frontiers in Veterinary Science, 8, 178. https://doi.org/10.3389/fvets.2021.654678

Liang, Y., Tabler, G. T., Dridi, S. (2020). Sprinkler Technology Improves Broiler Production Sustainability: From Stress Alleviation to Water Usage Conservation: A Mini Review. Frontiers in Veterinary Science, 7, 544814. https://doi.org/10.3389/fvets.2020.544814

Malheiros, R.D., Moraes, V. M. B., Bruno, L. D. G., Malheiros, E. B., Furlan, R. L., Macari, M. (2000) Environmental temperature and cloacal and surface temperatures of broiler chicks in first week post-hatch. The Journal of Applied Poultry Research. 9(1), 111-117. http://dx.doi.org/10.1093/japr/9.1.111

Nääs, I. A., Romanini, C. E. B., Neves, D.P., Nascimento, G. R., Vercellino, R.A. (2010) Broiler surface temperature of 42 day old chickens. Scientia Agricola, 67(5), 497-502. https://doi.org/10.1590/S0103-90162010000500001

Nascimento, G.R, Nääs, I.A., Pereira, D.F., Baracho, M.S., Garcia, R. (2011). Assessment of broiler surface temperature variation when exposed to different air temperatures. Revista Brasileira de Ciência Avícola, 13(4), 259-263. https://doi.org/10.1590/S1516-635X2011000400007

OECD/FAO. (2018), OECD-FAO Agricultural Outlook 2018-2027, OECD Publishing, Paris/FAO, Rome, Retrieved from: https://www.oecd-ilibrary.org/content/publication/1112c23b-en. https://doi.org/10.1787/agr_outlook-2018-en.

Paulino, M. T. F., Oliveira, E.M., de Grieser, D. de O., Toledo, J. B. (2019). Criação de frangos de corte e acondicionamento térmico em suas instalações: Revisão. Pubvet, 13(2), 1-14.

Plantharayil, A. B., Bhanja, S. K., Kumar, P., Shyamkumar, T. S., Mehra, M., Bhaisare, D. B., Rath, P. K. (2019). Effect of acute heat stress on the physiological and reproductive parameters of broiler breeder hens – A study under controlled thermal stress. Indian Journal of Animal Research. 53(9), 1150-1155. http://dx.doi.org/10.18805/ijar.B-3641

Shakeri, M.; Oskoueian, E.; Le, H. H.; Shakeri, M. (2020). Strategies to Combat Heat Stress in Broiler Chickens: Unveiling the Roles of Selenium, Vitamin E and Vitamin C. Veterinary Sciences. 7(2), 71. http://dx.doi.org/10.3390/vetsci7020071

Silva, I. & Vieira, F. (2010). Ambiência animal e as perdas produtivas no manejo pré-abate: o caso da avicultura de corte brasileira. Archivos de Zootecnia, 59, 113-131. https://doi.org/10.21071/az.v59i232.4910

Tessier, M., Du Tremblay, D., Klopfenstein, C., Beauchamp, G., Boulianneet, M. (2003). Abdominal skin temperature variation in healthy broiler chickens as determined by thermography. Poultry Science, 82(5), 846-849. https://doi.org/10.1093/ps/82.5.846.

Xiong, X., Lu, M., Yang, W., Duan, G., Yuan, Q., Shen, M., (2019). An automatic head surface temperature extraction method for top-view thermal image with individual broiler. Sensors, 19(23), 5286. http://dx.doi.org/10.3390/s19235286

Yahav, S., Straschnow, A., Luger, D., Shinder, D., Tanny, J., Cohen, S. (2004). Ventilation, sensible heat loss, broiler energy and water balance under harsh environmental conditions. Poultry Science, 83(2), 253-258. http://dx.doi.org/10.1093/ps/83.2.253

Zinn, K. R., Zinn, G. M., Jesse, G. W., Mayes, H. F., Ellersieck, M. R. (1985). Correlation of noninvasive surface temperature measurement with rectal temperature in swine. Am. J. Vet. Res. 46:1372–1374.

Downloads

Published

2022-07-04

How to Cite

Franco, E., & Nääs, I. de A. (2022). Broiler production efficiency: An analysis using thermal infrared images. Revista Brasileira De Engenharia De Biossistemas, 16. https://doi.org/10.18011/bioeng.2022.v16.1102

Issue

Section

Regular Section