SEED GERMINATION AND VIGOR OF Arctium lappa L. SEEDLINGS SUBJECTED TO ALUMINIUM TOXICITY
DOI:
https://doi.org/10.18011/bioeng2021v15n1p154-167Keywords:
Stress, Medicinal plant, Physiological potentialAbstract
Aluminium (Al) in acid soils reduces the physiological potential of seeds and limits growth of several species of agronomic and medicinal interest. However, information on Al toxicity in Arctium lappa L. (burdock, Asteraceae) is scarce. The aimed of this study was to evaluate the effect of aluminium stress on germination and vigor of A. lappa seedlings. Five concentrations of hydrated aluminium sulfate Al2(SO4)3·16H2O: 0 (control), 5, 10, 15 and 20 mmol L-1 were tested. The germination test was performed in Gerbox boxes (on paper – SP) and in paper roll – RP, using germitest® paper wetted 2.5 times its dry wight. The seeds were kept in B.O.D. chambers, under 20-30 ºC and constant withe light. Physiological potential of the seeds and vigor was evaluated by tests of first germination count (4th day), germination (7th day) and seedlings length. We observed a reduction in germination as Al concentration increased on the substrate SP. The lower aerial part length of the seedlings occurred with 20 mmol L-1 Al and on the substrate SP. Occurred a root inhibition of seedlings as Al concentration increased in both substrates, especially on the SP. Aluminium stress and substrate SP negatively affected seeds germination and vigor of A. lappa seedlings.
Downloads
References
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Secretaria de Defesa Agropecuária. Brasília: MAPA/ACS5 2009. 395 p.
CHAN, Y. S.; CHENG, L. N.; WU, J. H.; CHAN, E.; KWAN, Y. W.; LEE, S. M.; LEUNG, G. P.; YU, P. H.; CHAN, S.W. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology, v. 19, n. 5, p. 245-54, 2011. https://doi.org/10.1007/s10787-010-0062-4
DEGENHARDT, J.; LARSEN, P. B.; HOWELL, S. H.; KOCHIAN, L. V. Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiology, v. 117, n. 1, p. 19-27, 1998. https://doi.org/10.1104/pp.117.1.19
DOMINGUES, A. M.; SILVA, E.; FREITAS, G.; GANANÇA, J. F.; NÓBREGA, H.; SLASKI, J. J.; CARVALHO, M. A. P. Aluminium tolerance in bean traditional cultivars from Madeira. Revista de Ciências Agrárias, v. 36, n. 2, p. 148-156, 2013.
ECHART, C. L.; CAVALLI-MOLINA, S. C. Fitotoxicidade do alumínio: efeitos, mecanismo de tolerância e seu controle genético. Ciência Rural, v. 31, n. 3. p. 531-541, 2001. https://doi.org/10.1590/S0103-84782001000300030
FRANCO, F. B.; SILVA, T. T. da; BASTOS, R. G.; SANTOS, G. B. Triagem fitoquímica e atividade antioxidante de Arctium lappa Linne e Myrcianthes pungens. Revista Científica da UNIFENAS, v. 1, n. 1, p. 12-21, 2019.
GORDIN, C. R. B.; MARQUES, R. F.; ROSA, R. J. M.; SANTOS, A. M.; SCALON, S. P. Q. Emergência de plântulas e crescimento do pinhão manso exposto a alumínio. Semina: Ciências Agrárias, v. 34, n. 1, p. 147-156, 2013. https://doi.org/10.5433/1679-0359.2013v34n1p147
HARIDASAN, M. Nutritional adaptations of native plants of the Cerrado biome in acid soils. Brazilian Journal of Plant Physiology, v. 20, n. 3, p. 183-195, 2008. https://doi.org/10.1590/S1677-04202008000300003
HARTWIG, I.; OLIVEIRA, A. C.; CARVALHO, F. I. F.; BERTAN, I.; SILVA, J. A. G.; SCHMIDT, D. A. M.; VALÉRIO, I. P.; MAIA, L. C.; FONSECA, D. A. R.; REIS, C. E. S. Mecanismos associados à tolerância ao alumínio em plantas. Semina: Ciências Agrárias, v. 28, n. 2, p. 219-228, 2007. https://doi.org/10.5433/1679-0359.2007v28n2p219
KOSZO, C. R. R; RINALDI, M. C. S.; BARBEDO, C. J. Germinação de sementes de Erythrina speciosa Andr., Eugenia brasiliensis Lam. e Cucumis sativus L. em meio ácido. Hoehnea, v. 34, n. 3, p. 271-282, 2007. https://doi.org/10.1590/S2236-89062007000300002
LI, M.; QIN, R.; JIANG, W.; LIU, D. Cytogenetical effects of aluminum on root meristem cells of Helianthus annuus L. Botanical Science, v. 93, n. 1, p. 15-22, 2015. https://doi.org/10.17129/botsci.230
LIMA, A. R.; BARBOSA, V. C.; SNTOS FILHO, P. R.; GOUVÊA, C. M. C. P. Avaliação in vitro da atividade antioxidante do extrato hidroalcoólico de folhas de bardana. Revista Brasileira de Farmacognosia, v. 16 n. 4, p. 531-536, 2006. https://doi.org/10.1590/S0102-695X2006000400016
LIMA, C. G. R.; CARVALHO, M. P.; NARIMATSU, K. C. P.; SILVA, M. G.; QUEIROZ, H. A. Atributos físico-químicos de um Latossolo do Cerrado brasileiro e sua relação com características dendrométricas do eucalipto. Revista Brasileira de Ciência do Solo, v. 34, p. 163-173, 2010. https://doi.org/10.1590/S0100-06832010000100017
MACHADO, J. S.; STEINER, F.; ZOZ, F.; HONDA, G. B.; OLIVEIRA, B. L. N. Effects of aluminum on seeds germination and Initial growth of physic nut seedlings. Revista de Agricultura Neotropical, v. 2, n. 1, p. 24-31, 2015. https://doi.org/10.32404/rean.v2i1.248
MERIÑO-GERGICHEVICH, C.; ALBERDI, M.; IVANOC, A. G.; REYES-DIAZ, M. Al3+ - Ca2+ interaction in plants growing in acid soils: Al-phytotoxicity response to calcareous amendments. Journal of Soil Science and Plant Nutrition. V. 10, n. 3, p. 217-243, 2010.
MING, D. S.; GUNS, E.; EBERDING, A.; TOWERS, G. H. Isolation and characterization of compounds with anti-prostate cancer activity from Arctium lappa L. using bioactivity-guided fractionation. Pharmaceutical Biology, v. 42, n. 1, p. 44-48, 2004. https://doi.org/10.1080/13880200490505474
MORGAN, R. Enciclopédia das ervas e plantas medicinais. 9. ed. São Paulo: Hemus, 2003. 555p.
MOTA, L. H. S.; SCALON, S. P. Q.; DRESCH, D. M.; SCALON, L. Q.; SILVA, C. J. Gas exchange and antioxidant activity accessions of Jatropha curcas L. under aluminium (Al) stress. Australian Journal of Crop Science, v. 14, n. 3, p. 510-516, 2020. https://doi.org/10.21475/ajcs.20.14.03.p2205
MUNARIN, E. E. O; ZÁRATE, N. A. H; VIEIRA, M. C; ROSA, Y. B. C. J; RODRIGUES, E. T. Espaçamentos entre plantas e cobertura do solo com cama-de-frango na produção da bardana (Arctium lappa L.). Revista Brasileira de Plantas Medicinais, v. 12, n. 2, p. 141-148, 2010. https://doi.org/10.1590/S1516-05722010000200003
RABEL, D. O.; MOTTA, A. C. V.; BARBOSA, J. Z.; MELO, V. F.; PRIOR, S. A. Depht distribution of exchangeable aluminum in acid soils: a study from subtropical Brazil. Acta Scientiarum. Agronomy, v. 40, p. 1-10, 2018. https://doi.org/10.4025/actasciagron.v40i1.39320
SAMAD, R.; RASHID, P.; KARMOKER, J. L. Effects of aluminium toxicity on germination of seeds and its correlation with K+, Cl- and Al3+ accumulation in radicle and plumule of Oryza sativa L. and Cicer aeriatinum L. Bangladesh Journal of Botany, v. 46, n. 3, p. 979-986, 2017.
SCHEFFER-BASSO, S. M.; PRIOR, B. C. Aluminum toxicity in roots of legume seedlings assessed by topological analysis. Acta Scientiarum. Agronomy, v. 37, n. 1, p. 61-68, 2015. https://doi.org/10.4025/actasciagron.v37i1.18362
SILVA, P.; MATOS, M. Assessment of the impact of aluminium on germination, early growth and free proline content in Lactuca sativa L. Ecotoxicology and Environmental Safety, v. 131, p. 151-156, 2016. https://doi.org/10.1016/j.ecoenv.2016.05.014
SIMONOVICOVÁ, M.; TAMAS, L.; HUTTOVÁ, J.; MISTRIK, I. Effect of aluminium on oxidative stress related enzymes activities in barley roots. Biologia Plantarum, v. 48, n. 2, p. 261 - 266, 2004. https://doi.org/10.1023/B:BIOP.0000033454.95515.8a
SOUZA, M. C.; BUENO, P. C. P.; MORELLATO, L. P. C.; HABERMANN, G. Ecological strategies of Al-accumulating and non-accumulating functional groups from the Cerrado sensu stricto. Anais da Academia Brasileira de Ciências, v. 87, n. 2, p. 813-823, 2015. https://doi.org/10.1590/0001-3765201520140222
VENDRAME, P. R. S.; BRITO, O. R.; GUIMARÃES, M. F.; MARTINS, E. S.; BECQUER, T. Fertility and acidity status of Latossolos (oxisols) under pasture in the Brazilian Cerrado. Anais da Academia Brasileira de Ciências, v. 82, n. 4, p. 1085-1094, 2010. https://doi.org/10.1590/S0001-37652010000400026
WEBER, O. L. S.; CHITOLINA, J. C.; CAMARGO, O. A.; ALLEONI, L. R. F. Cargas elétricas estruturais e variáveis de solos tropicais altamente intemperizados. Revista Brasileira de Ciência do Solo, v. 29, p. 867-873, 2005. https://doi.org/10.1590/S0100-06832005000600004
YANG, J. L.; ZHU, X. F.; PENG, Y. X.; ZHENG, C.; LI, G. L.; LIU, Y.; SHI, Y. Z.; ZHENG, S. J. Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiology, v. 155, p. 1885-1892, 2011. https://doi.org/10.1104/pp.111.172221
ZHANG, H.; TAN, Z. Q.; HU, L. Y.; WANG, S. H.; LUO, J. P.; JONES, R. L. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. Journal of Integrative Plant Biology, v. 52, n. 6, p. 556-567, 2010. https://doi.org/10.1111/j.1744-7909.2010.00946.x
ZHENG, S. J.; LIN, X. Y.; YANG, J. L.; LIU, Q.; TANG, C. The kinetics of aluminum adsorption and desorption by root cell walls of an aluminum resistance wheat (Triticum aestivum L.) cultivar. Plant Soil, v. 261, p. 85-90, 2004. https://doi.org/10.1023/B:PLSO.0000035576.71760.2b
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Brasileira de Engenharia de Biossistemas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
a) Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License that allows the sharing of the work with recognition of authorship and initial publication in this journal.
b) Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publish in an institutional repository or as a book chapter), with recognition of authorship and initial publication in this journal.