COMPARISON BETWEEN VEGETATIVE INDEXES OBTAINED BY AERIAL IMAGES WITH UNMANNED AERIAL VEHICLES (UAV) AND SATELLITE
DOI:
https://doi.org/10.18011/bioeng2020v14n2p111-124Keywords:
Remote Sensing, UAV, Landsat-8, NDVI, MPRI, ENDVIAbstract
Remote sensing (RS), which is widely employed in different areas, may be used as well for the management of agricultural systems. Among its different tools and applications, the use of vegetation indexes, which attempt to relate the variations of the measured spectral behavior with different biophysical parameters of the plants, may be one of the most important. And the quality of the resulting products will depend intrinsically on the precision of the images being used. On this way, this work aims to compare the vegetation indexes obtained from satellite images and with unmanned aerial vehicle (UAV) in an irrigated pasture area. The images were obtained from the Landsat-8 satellite and with UAV (both conventional RGB and infrared adapted NBG cameras), and the following indices were calculated: NDVI, the classic index for monitoring vegetation; the MPRI, which is related to the NDVI, but uses only the bands of the visible spectrum; NDVI adapted to RGB digital cameras and; ENDVI, an enhancement of the NDVI proposed to optimize the use of RGB cameras. The values of the indices obtained by these images were further correlated. In order to make the comparison with Landsat-8 images more appropriate, the digital values of UAV images were converted to reflectance values. The results of this study indicated an intermediate positive correlation of the NDVI and ENDVI indices obtained from satellite and UAV images, which could be influenced by the scale difference across the images, as well as by the temporal variation in the data acquisition from the different sources. The better calibration of the images taken with UAVs is also important to ensure the conversion to reflectance to be adequate. The studied indexes were sensitive to indicate the variations in the studied area and confirmed that they can be tools of precision agriculture, helping in the planning of pasture management with the application of Precision Agriculture.
Downloads
References
AASEN, H.; BURKART, A.; BOLTEN, A.; BARETH, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing, v. 108, p. 245-259, 2015.
AGISOFT LLC (2014) - Agisoft Photoscan Pro. St. Petersburg, Russia. Disponível em: http://www.agisoft.com
ALBUQUERQUE, R. W. DE., COSTA, M. O., FERREIRA, M. E., JORGE, L. A. C., SARRACINI, L. H., ROSA, E. D. Uso do índice MPRI na avaliação de processos de Restauração Florestal (RF) utilizando sensor RGB a bordo de VANT quadricóptero. In: SEMINÁRIO DE ATUALIZAÇÃO EM SENSORIAMENTO REMOTO E SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS APLICADOS À ENGENHARIA FLORESTAL, 18., 2017, Santos. Proceedings... São José dos Campos: INPE, 2017. p. 4795-4802 Disponível em: <https://proceedings.science/proceedings/59/_papers/60224/download/abstract_file1>
BARBOSA, B. D. S.; FERRAZ, G. A. S.; GONÇALVES, L. M.; MARIN, D. B.; MACIEL, D. T.; FERRAZ, P. F. P.; ROSSI, G. RGB vegetation indices applied to grass monitoring: a qualitative analysis. Agronomy Research, v.17, p.349–357, 2019. https://doi.org/10.15159/AR.19.119
BERNARDI, A. C. C.; GREGO, C. R.; ANDRADE, R. G.; RABELLO, L. M.; INAMASU, R. Y. Spatial variability of vegetation index and soil properties in an integrated crop-livestock system. Revista Brasileira de Engenharia Agrícola e Ambiental, v.21, n.8, p.513-518, 2017.
BERNARDI, A. C. C.; RABELLO, L. M.; INAMASU, R. Y.; GREGO, C. R.; ANDRADE, R. G. Variabilidade espacial de parâmetros físico-químicas do solo e biofísicos de superfície em cultivo do sorgo. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 18, p. 623-630, 2014.
BERNI, J. A. J.; ZARCO-TEJADA, P. J.; SUAREZ, L.; FERERES, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. IEEE Transactions on Geoscience and Remote Sensing, v. 47, n. 3, p. 722-738, 2009.
BRITO NETO, R. T.; BARROS FILHO, M. B. B.; LOPES, H. L.; PACHECO, A. P. Determinação de valores físicos de imagens TM/Landsat- 5 utilizando a linguagem legal para obter índices de vegetação. In: SIMPÓSIO BRASILEIRO DE CIÊNCIAS GEODÉSICAS E TECNOLOGIAS DA GEOINFORMAÇÃO, 2, Recife, 2008. Anais. Recife, UFPE.
CALDERANO FILHO, B.; SANTOS, H. G.; FONSECA, O. O. M.; SANTOS, R. D.; PRIMAVESI, O.; PRIMAVESI, A. C. Os solos da Fazenda Canchim, Centro de Pesquisa de Pecuária do Sudeste, São Carlos, SP: levantamento semidetalhado, propriedades e potenciais. Rio de Janeiro: EMBRAPA-CNPS; São Carlos, SP: EMBRAPA-CPPSE, 1998. 95 p. il. (EMBRAPA-CNPS. Boletim de pesquisa, 7; EMBRAPA-CPPSE. Boletim de pesquisa, 2).
HATFIELD, J. L.; GITELSON, A. A.; SCHEPERS, J. S.; WALTHALL, C. L. Application of spectral remote sensing for agronomic decisions. Agronomy Journal, v.100, p.117-131, 2008.
INAMASU, R. Y.; BERNARDI, A. C. C.; VAZ, C. M. P.; NAIME, J. M.; QUEIROS, L. R.; RESENDE, A. V.; VILELA, M. de F.; JORGE, L. A. C.; BASSOI, L. H.; PEREZ, N. B.; FRAGALLE, E. P. Agricultura de precisão para a sustentabilidade de sistemas produtivos do agronegócio brasileiro. In: INAMASU, R. Y.; NAIME, J. M.; RESENDE, A. V.; BASSOI, L. H.; BERNARDI, A. C. C. (Ed.). Agricultura de precisão: um novo olhar. São Carlos: Embrapa Instrumentação, 2011. p. 14-26.
INAMASU, R. Y.; BERNARDI, A. C. C. Agricultura de precisão. In: BERNARDI, A. C. C.; NAIME, J. M.; RESENDE, A. V.; BASSOI, L. H.; INAMASU, R. Y. (Ed.). Agricultura de precisão: resultados de um novo olhar. Brasília, DF: Embrapa, 2014. p. 21-33.
JORGE, L. A. C.; INAMASU, R. Y. Uso de veículos aéreos não tripulados (VANT) em agricultura de precisão. In: BERNARDI, A. C. C.; NAIME, J. M.; RESENDE, A. V.; BASSOI, L. H.; INAMASU, R. Y. (Ed.). Agricultura de precisão: resultados de um novo olhar. Brasília, DF: Embrapa, 2014. p. 109-134.
LILLESAND, T. M.; KIEFER, R. W.; CHIPMAN, J. W. Remote Sensing and Image Interpretation, 5ª Ed. New York: John Wiley & Sons, 2004. 763p.
LINHARES, M. M. A.; ROCHA, N. C. C.; AMARAL, B. A. S. Análise do índice MPRI como indicador vegetativo através da correlação do mesmo com o índice NDVI. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 16. (SBSR), 2013, Foz do Iguaçu. Anais... São José dos Campos: INPE, 2013. p. 8254-8260. Disponível em: <http://www.dsr.inpe.br/sbsr2013/files/p1190.pdf>.
MARKHAM, B. L.; BARKER, J. L. Radiometric properties of US processed Landsat MSS data. Remote Sensing of Environment, v. 22, n. 1, p. 39-71, 1987.
MAXMAX. Enhanced Normalized Difference Vegetation Index (ENDVI). Disponvível em: https://www.maxmax.com/maincamerapage/remote-sensing/enhanced-normalized-difference-vegetation-index. Acesso em: 27 mar 2015.
NUMATA, I.; ROBERTS, D. A.; CHADWICK, O. A.; SCHIMEL, J.; SAMPAIO, F. R.; LEONIDAS, F. C.; SOARES, J. V. Characterization of pasture biophysical properties and the impact of grazing intensity using remotely sensed data. Remote Sensing of Environment, v.109: 314–327, 2007.
OSGEO – Open Source Geospatial Foundation. 2011. Quantum GIS (QGIS). Open Source Geographic Information System (GIS). Version 1.6.0. Disponível em: <http://qgis.org/>
PEZZOPANE, J. R. M.; BERNARDI, A. C. C.; BOSI, C.; CRIPPA, P. H.; SANTOS, P. M.; NARDACHIONE, E. C. Assessment of Piatã palisadegrass forage mass in integrated livestock production systems using a proximal canopy reflectance sensor. European Journal of Agronomy, v. 103, p. 130-139, 2019.
ROLIM, G. D. S.; CAMARGO, M. B. P. D.; LANIA, D. G.; MORAES, J. F. L. D. Climatic classification of Köppen and Thornthwaite sistems and their applicability in the determination of agroclimatic zonning for the state of São Paulo, Brazil. Bragantia, v.66(4): 711-720, 2007.
ROUSE, J.W.; HAAS, R.H.; SCHELL, J.A.; DEERING, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In: EARTH RESOURCES TECHNOLOGY SATELLITE SYMPOSIUM, 1., 1973, Washington. Proceedings. Washington: NASA, 1973. v.1, p.309317.
SANCHES, I.; ANDRADE, R. G.; QUARTAROLI, C. F.; RODRIGUES, C. A. G. Análise comparativa de três métodos de correção atmosférica de imagens Landsat 5 – TM para obtenção de reflectância de superfície e NDVI. In: Simpósio Brasileiro de Sensoriamento Remoto (SBSR), 15., 2011, Curitiba. Anais. São José dos Campos, SP. INPE, 2005. p 7564-7571. Acesso em 22 de agosto de 2015.
SHIRATSUCHI, L. S.; BRANDAO, Z. N.; VICENTE, L. E.; VICTORIA, D. C.; DUCATI, J. R.; OLIVEIRA, R. P.; VILELA, M. F. Sensoriamento Remoto: conceitos básicos e aplicações na Agricultura de Precisão. In: BERNARDI, A. C. C.; NAIME, J. M.; RESENDE, A. V.; BASSOI, L. H.; INAMASU, R. Y. (Ed.). Agricultura de precisão: resultados de um novo olhar. Brasília, DF: Embrapa, 2014. p. 58-73.
SUSANTORO, T. M.; WIKANTIKA, K.; HARTO, A. B.; SUWARDI. D. Monitoring sugarcane growth phases based on satellite image analysis (a case study in Indramayu and its Surrounding, West Java, Indonesia). HAYATI Journal of Biosciences, v.26, p.117-128, 2019. DOI:10.4308/hjb.26.3.117.
YANG, Z.; WILLIS, P.; MUELLER, R. Impact of Band-Ratio Enhanced AWIFS Image to Crop Classification Accuracy. In: Pecora – The Future of Land Imaging… Going Operational, Denver, Colorado, USA. Proceedings. Maryland: (ASPRS), 2008.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Brasileira de Engenharia de Biossistemas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
a) Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License that allows the sharing of the work with recognition of authorship and initial publication in this journal.
b) Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publish in an institutional repository or as a book chapter), with recognition of authorship and initial publication in this journal.