POTENTIAL USE OF THERMAL CAMERA COUPLED IN UAV FOR CULTURE MONITORING

Authors

  • L. A. Viana
  • L. Zambolim
  • T. V. Sousa
  • D. C. Tomaz

DOI:

https://doi.org/10.18011/bioeng2018v12n3p286-298

Keywords:

thermographic camera, drones, RPA, hydrical stress, pathogen detection

Abstract

The highest productivity of the crop is achieved under ideal growing conditions. In the search of the ideal environment, it is necessary to constantly manage and check the cultivated area, considering the possibility of pest and disease attack, as well as stress due to lack of water and nutrients. Constant monitoring, if done manually, is extremely costly and time-consuming, as well as obtaining information that is often related to an existing problem. Studies have shown that using sensor-coupled UAVs is a way to get information and results faster than traditional agricultural management and monitoring systems. Therefore, the main purpose of this review is the use of a thermal camera coupled to UAV for monitoring agricultural culture. The studies have demonstrated the great applicability of the use of thermal cameras coupled to UAV in agriculture, since it makes it possible to evaluate from water stress to fruit damages, besides the fact that the use of UAV allows to obtain information of large areas in a space of time smaller than monitoring.

Downloads

Download data is not yet available.

References

BALLESTER,C.; JIMÉNEZ-BELLO, M.A.; CASTEL, J.R.; INTRIGLIOLO, D.S. Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agricultural and Forest Meteorology, v.168: 120-129, 2013. DOI: https://doi.org/10.1016/j.agrformet.2012.08.005

BARANOWSKI, P.; MAZUREK, W.; WOZNIAK, J.; MAJEWSKA, U. Detection of early bruises in apples using hyperspectral data and thermal imaging. Journal of Food Engineering, v.110(3): 345-355, 2012.

BELLVERT, J.; ZARCO-TEJADA, J.; GIRONA J.; FERERES, E. Mapping crop water stress index in a 'Pinot-noir' vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agriculture, v.15(4): 361-376, 2014. DOI: https://doi.org/10.1007/s11119-013-9334-5

BERDUGO, C. A.; ZITO, R.; PAULUS, S.; MAHLEIN, A.-K. Fusion of sensor data for the detection and differentiation of plant diseases in cucumber. Plant Pathology, v.63: 1344-1356, 2014. DOI: https://doi.org/10.1111/ppa.12219

BULANON, D. M., BURKS, T. F., & ALCHANATIS, V. Study on temporal variation in citrus canopy using thermal imaging for citrus fruit detection. Biosystems Engineering, v.101(2): 161-171, 2008. DOI: https://doi.org/10.1016/j.biosystemseng.2008.08.002

CANDIAGO, S.; REMONDINO, F.; GIGLIO, M.; DUBBINI, M.; GATTELLI, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sensing, v.7(4): 4026-4047, 2015. DOI: https://doi.org/10.3390/rs70404026

CALDERÓN, R.; MONTES-BORREGO, M.; LANDA, B. B.; NAVAS-CORTÉS, J. A. ; ZARCO-TEJADA, P. J. Detection of downy mildew of opium poppy using high-resolution multi-spectral and thermal imagery acquired with an unmanned aerial vehicle. Precision Agriculture, v.15(6): 639-661, 2014. DOI: https://doi.org/10.1007/s11119-014-9360-y

CALDERÓN, R.; NAVAS-CORTÉS, J.A.; LUCENA, C.; ZARCO-TEJADA, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, v.139: 231-245, 2013. DOI: https://doi.org/10.1016/j.rse.2013.07.031

FREEMAN, P. K.; FREELAND, R. S. Agricultural UAVs in the U.S.: potential, policy, and hype. Remote Sensing Applications: Society and Environment, v.2: 35-43, 2015. DOI: https://doi.org/10.1016/j.rsase.2015.10.002

FENG, Q. C.; ZOU, W.; FAN, P. F.; ZHANG, C. F.; WANG, X. Design and test of robotic harvesting system for cherry tomato. International Journal Agricultural and Biological Engineering, v.11(1): 96-100, 2018. DOI: https://doi.org/10.25165/j.ijabe.20181101.2853

GAGO, J.; DOUTHE, C.; COOPMAN, R.E.; GALLEGO, P.P.; RIBAS-CARBO, M.; FLEXAS, J.; ESCALONA, J.; MEDRANO, H. UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, v.153: 9-19, 2015. DOI: https://doi.org/10.1016/j.agwat.2015.01.020

GAN, H.; LEE, W. S.; ALCHANATIS, V.; ABD-ELRAHMAN, A. An Active Thermography Method for Immature Citrus Fruit Detection. 14th International Conference on Precision Agriculture, 8p. Montreal, Canadá. Jun. 2018.

GHAZOUANI H., CAPODICI F., CIRAOLO G., MALTESE A., RALLO G., PROVENZANO G. Potential of Thermal Images and Simulation Models to Assess Water and Salt Stress: Application to Potato Crop in Central Tunisia. Chemical Engineering Transactions, v.58, 709-714, 2017. DOI: https://doi.org/10.3303/CET1758119

GONZÁLEZ-DUGO, V.; ZARCO-TEJADA, P. J.; NICOLÁS, E.; NORTES, P. A.; ALARCÓN, J. J.; INTRIGLIOLO, D. S.; FERERES, E. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agriculture, v. 14(6): 660-678, 2013. DOI: https://doi.org/10.1007/s11119-013-9322-9

HUSSAIN, A.; PU, H.; SUN, D-W. Innovative nondestructive imaging techniques for ripening and maturity of fruits - A review of recent applications. Trends in Food Science & Technology, v.72: 144-152, 2018. DOI: https://doi.org/10.1016/j.tifs.2017.12.010

ISHIMWE, R.; ABUTALEB, K.; AHMED, F. Applications of thermal imaging in agriculture-a review. Advances in Remote Sensing, v.3(3): 128-140, 2014. DOI: https://doi.org/10.4236/ars.2014.33011

IVY. FLIR Infrared Thermal Imaging Cameras. Disponível em: <http://www.ivytools.com/FLIR-Infrared-Thermal-Imaging-Cameras-s/1824.htm>. Acesso em: 29 de agosto de 2018.

JIMÉNEZ-BELLO, M.A.; BALLESTER, C.; CASTEL, J.R.; INTRIGLIOLO, D.S. Development and validation of an automatic thermal imaging process for assessing plant water status. Agricultural Water Management, v.98(10): 1497-1504, 2011. DOI: https://doi.org/10.1016/j.agwat.2011.05.002

JORGE, L. A. C.; BRANDÃO, Z. N.; INAMASU, R. Y. Insights and recommendations of use of UAV platforms in precision agriculture in Brazil. SPIE Remote Sensing, v.9239: 18p, 2014. DOI: https://doi.org/10.1117/12.2067450

JORGE, L. A. de C.; INAMASU, R. Y. Uso de veículos aéreos não tripulados (VANT) em agricultura de precisão. Embrapa Instrumentação. Disponível em: <https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1003485/uso-de-veiculos-aereos-nao-tripulados-vant-em-agricultura-de-precisao>. Acesso em: 24 out. 2018.

KHANAL, S.; FULTON, J.; SHEARER, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, v.139: 22-32, 2017. DOI: https://doi.org/10.1016/j.compag.2017.05.001

KIM , G.; KIM , G.-H.; PARK, J.; KIM , D.-Y; CHO, B.-K. Application of Infrared Lock-In Thermography for the Quantitative Evaluation of Bruises on Pears. Infrared Physics & Technology, v.63:133-139, 2014. DOI: http://dx.doi.org/10.1016/j.infrared.2013.12.015

KUZY, J.; JIANG, Y.; LI, C. Blueberry bruise detection by pulsed thermographic imaging. Postharvest Biology and Technology, v.136: 166-177, 2018. DOI: https://doi.org/10.1016/j.postharvbio.2017.10.011

LEVINE, S.; PASTOR, P.; KRIZHEVSKY, A.; IBARZ, J.; QUILLEN, D. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International Journal of Robotics Research, v.37(4): 421-436, 2018. DOI: https://doi.org/10.1177/0278364917710318

LINDEN, V.V.; VEREYCKEN, R.; BRAVO, C.; RAMON , H.; DE BAERDEMAEKER, J. Detection technique for tomato bruise damage by thermal imaging. Acta Horticulturae, v.599: 389-394, 2003.

LINKE, M.; GEYER, M.; BEUCHE, H; HELLEBRAND, H.J. Possibilities and Limits of the Use of Thermography for the Examination of Horticultural Products. Agrartechnische Forschung , v.6: 110-114, 2000.

MAHLEIN, A.K. Plant Disease Detection by Imaging Sensors - Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. APS Journals, v.100(2): 241-251, 2016. DOI: https://doi.org/10.1094/PDIS-03-15-0340-FE

OFFERMANN, S.; BICANIC, D.; KRAPEZ, J. C.; BALAGEAS, D.; GERKEMA, E.; CHIRTOC, M.; EGEE, M.; KEIJZER, K.; JALINK, H. Infrared transient thermography for noncontact, non-destructive inspection of whole and dissected apples and of cherry tomatoes at different maturity stages. Instrumentation Science and Technology, v.26: 145-155, 1998. DOI: http://dx.doi.org/10.1080/10739149808002689

OLIVEIRA, S. N.; JÚNIOR, O. A. C.; GOMES, R. A. T.; GUIMARÃES, R. F.; MCMANUS, C. M. Deforestation analysis in protected areas and scenario simulation for structural corridors in the agricultural frontier of Western Bahia, Brazil. Land Use Policy, v.61: 40-52, 2017. DOI: https://doi.org/10.1016/j.landusepol.2016.10.046

O'SHAUGHNESSY, S.A.; EVETT, S.R.; COLAIZZI, P.D.; HOWELL, T.A. Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, v.98(10): 1523-1535, 2011. DOI: https://doi.org/10.1016/j.agwat.2011.05.005

POLO, J.; HORNERO, G; DUIJNEVELD, C.; GARCÍA, A.; CASAS,O. Design of a low-cost Wireless Sensor Network with UAV mobile node for agricultural applications. Computers and Electronics in Agriculture, v.119: 19-32, 2015. DOI: https://doi.org/10.1016/j.compag.2015.09.024

ROMANO, G.; ZIA, S.; SPREER, W.; SANCHEZ, C.; CAIRNS, J.; ARAUS J. L.; MÃœLLER, J. Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Computers and Electronics in Agriculture, v.79(1): 67-74, 2011. DOI: https://doi.org/10.1016/j.compag.2011.08.011

PURI, V.; NAYYAR, A., RAJA, L. Agriculture drones: A modern breakthrough in precision agriculture. Journal of Statistics and Management Systems, v.20(4): 507-518, 2017. DOI: https://doi.org/10.1080/09720510.2017.1395171

RBAC-E nº 94/2017. Regulamento Brasileiro de Aviação Civil Especial nº 94/2017 da Agencia Nacional de Aviação Civil. 2017.

REGER, M.; BAUERDICK, J.; BERNHARDT, H. Drohnen in der Landwirtschaft: Aktuelle und zukünftige Rechtslage in Deutschland, der EU, den USA und Japan. Landtechnik, v.73(3): 62-80, 2018. DOI: http://dx.doi.org/10.15150/lt.2018.3183

SALAMÍ, E.; BARRADO, C.; PASTOR, E. UAV Flight Experiments Applied to the Remote Sensing of Vegetated Areas. Remote Sens, v.6(11), 11051-11081, 2014. DOI: https://doi.org/10.3390/rs61111051

SANKARAN, S.; KHOT, L. R.; ESPINOZA, C. Z.; JAROLMASJE, S.; SATHUVALLI, V. S.; VANDEMARK, G. J.; MIKLAS, P. N.; CARTER, A. H.; PUMPHREY, M. O.; KNOWLES, N. R.; PAVEK. M. J. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. European Journal of Agronomy, v.70, 112-123, 2015. DOI: https://doi.org/10.1016/j.eja.2015.07.004

SANKARAN, S.; MAJA,J. M.; BUCHANON, S.; EHSANI, R. Detecção de Huanglongbing (Citrus Greening) usando técnicas visíveis, Near Infrared e Thermal Imaging. Sensors, v.13(2): 2117-2130, 2013. DOI: https://doi.org/10.3390/s130202117

TORRES-RUA, A.; NIETO, H.; PARRY, C.; ELARAB, M.; COLLATZ, W.; COOPMANS, C.; MCKEE, L.; MCKEE, M.; KUSTAS, W. Inter-comparison of thermal measurements using ground-based sensors, UAV thermal cameras, and eddy covariance radiometers. Proceedings of SPIE v.10664, 12p., 2018. DOI: https://doi.org/10.1117/12.2305832

VISUAL - Soluções Drones Visual. Disponível em: < http://loja.dronevisual.com/>. Acesso em: 27 de agosto de 2018.

XU, J.; LV, Y.; LIU, X. ; DALSON, T.; YANG S.; WU, J. Diagnosing Crop Water Stress of Rice using Infrared Thermal Imager under Water Deficit Condition. International Journal of Agriculture & Biology. v.00(0): 000, 2016. DOI: https://doi.org/10.17957/IJAB/15.0125

Published

2018-09-30

How to Cite

Viana, L. A., Zambolim, L., Sousa, T. V., & Tomaz, D. C. (2018). POTENTIAL USE OF THERMAL CAMERA COUPLED IN UAV FOR CULTURE MONITORING. Revista Brasileira De Engenharia De Biossistemas, 12(3), 286–298. https://doi.org/10.18011/bioeng2018v12n3p286-298

Issue

Section

Regular Section