ROBUSTNESS CLUSTERS AS SELECTION CRITERIUM IN GENETIC IMPROVEMENT FOR MITIGATION OF THE IMPACTS OF CLIMATE CHANGE

Authors

  • R. N. Pereira
  • R. L. Serodio
  • H. T. Ventura
  • F. R. Araújo Neto
  • N. T. Pegolo

DOI:

https://doi.org/10.18011/bioeng2018v12n2p152-163

Keywords:

reaction norm, environmental sensitivity, mitigation, climatic changes

Abstract

Climate changes are expected for the next decades and, consequently, their impacts on cattle breeding, with artificial selection a possible method to mitigate them. This work aimed to develop a selection system based on the genetic parameters generated by adaptive reaction norm models in Nellore cattle. Genetic and growth data were provided by the Brazilian Association of Cattle Breeders. An environmental gradient was created using contemporary group averages standardized to a mean of zero and standard deviation of one. For the prediction of coefficients of the adaptive reaction norms, the random regression model was used, considering cubic polynomials for weights at 450 days with analysis of separated sexes. The genetic values ​​of the different individuals were calculated as a function of the environmental gradient, using the BLUPF90 software. The individuals were classified considering coefficients that generated norms with high genetic values ​​and with lower variation along the environmental gradient. The increase in genetic value and its robustness were then compensated by creating robustness clusters (CRs) based on the direct comparison between the coefficients. The results of the classification showed that the selection of individuals of the classes of greater robustness should generate progenies with less environmental sensitivity, since the coefficients are additive genetic components. It is concluded that the cluster selection of robustness showed to be an effective method of mitigating the impacts produced in the production systems by changes in the breeding environments.

Downloads

Download data is not yet available.

References

CHIAIA, H. L. J., DE LEMOS, M. V. A., VENTURINI, G. C., ABOUJAOUDE, C., BERTON, M. P., FEITOSA, F. B., CARVALHEIRO, R., ALBUQUERQUE, L. G., DE OLIVEIRA, H. N., BALDI, F. Genotype x environment interaction for age at first calving, scrotal circumference, and yearling weight in Nellore cattle using reaction norms in multitrait random regression models, Journal of Animal Science, v, 93, n.4, p.1503-1510, 2015.

DE ARAÚJO NETO, F.R.; PEGOLO, N.T.; ASPILCUETA-BORQUIS, R.R.; PESSOA, M.C.; BONIFÁCIO, A.; LOBO, R.B.; DE OLIVEIRA, H.N. Study of the effect of genotype-environment interaction on age at first calving and production traits in Nellore cattle using multi-trait reaction norms and Bayesian inference. Animal Science Journal, 2018. No prelo. Disponível em: https://onlinelibrary.wiley.com/doi/pdf/10.1111/asj.12994. Acesso em: 30 mai. 2018.

DE JONG, G.; BIJMA, P. Selection and phenotypic plasticity in evolutionary biology and animal breeding. Livestock Production Science, v.78, n. 3, p.195-214, 2002.

DENTON, F.; WILBANKS, T. J.; ABEYSINGHE, A. C.; BURTON, I.; GAO, Q.; LEMOS, M. C.; MASUI, T.; O'BRIEN, K. L.; WARNER, K. Climate-resilient pathways: adaptation, mitigation, and sustainable development. Climate Change 2014: Impacts, Adaptation, and Vulnerability, p. 1101-1131, 2014.

FERREIRA, J. L.; LOPES, F. B.; ASSIS, A. S.; LÔBO, R. B. Espacialização climática e análise de dados longitudinais de bovinos Nelore criados nos Estados do Maranhão, Pará e Tocantins por meio de técnicas univariadas e multivariadas. Semina: Ciências, Agrárias, Londrina, v. 35, n. 4, p. 2197-2210, 2014.

HAY, E. H.; ROBERTS A. Genotype × prenatal and post-weaning nutritional environment interaction in a composite beef cattle breed using reaction norms and a multi-trait model. Journal of Animal Science, v.96, n. 2, p.444-453 , 2018.

IPCC - INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects. Cambridge University Press, 2014.

LALLIAS, D.; QUILLET, E.; BÉGOUT, M.-L.; AUPÉRIN, B.; KHAW, H. L.; MILLOT, S.; VALOTAIRE, C.; KERNÉIS, T.; LABBÉ, L.; PRUNET, P; DUPONT-NIVET, M. Genetic variability of environmental sensitivity revealed by phenotypic variation in body weight and (its) correlations to physiological and behavioral traits. PLoS One, v.12, n.12, 2017.

LEMOS, M. V. A.; CHIAIA, H. L. J.; BERTON, M.; FEITOSA, F. L. B.; ABOUJAOUDE, C.; VENTURINI, G. C.; DE OLIVEIRA, H. N.; DE ALBUQUERQUE, L. G.; BALDI, F. Reaction norms for the study of genotype-environment interaction for growth and indicator traits of sexual precocity in Nellore cattle. Genetics and Molecular Research, v. 14, n. 2, p. 7151-7162, 2015.

LEWONTIN, R. C. The Triple Helix: Gene, Organism an. Environment. Harvard University Press, Cambridge. 1998. 192p.

LOFEU, L.; KOHLSDORF, T. Mais que seleção: o papel do ambiente na origem e evolução da diversidade fenotípica. 1ª edição. Ribeirão Preto: Sociedade Brasileira de Genética, v. 10, n.1, p. 11- 19, 2016.

MANK, J. E.; HOSKEN, D. J.; WEDELL, N. Conflict on the sex chromosomes: cause effect and complexity. Cold Spring Harbor Perspectives in Biology, v.6, n.12, a017715, 2014.

MISZTAL, I. BLUP90 family of programs. 2009. Disponível em: <http://nce.ads.uga.edu/~ignacy/newprograms.html>. Acesso em: 19 de jun. 2017.

OLIVEIRA, D.P.; LOURENÇO, D. A. L.; TSURUTA, S.; MISZTAL, I.; SANTOS, D. J. A.; DE ARAÚJO NETO, F. R.; ASPILCUETA-BORQUIS, R. R.; BALDI, F.; CARVALHEIRO, R.; DE CAMARGO, G. M. F.; ALBUQUERQUE, L. G.; TONHATI, H. Reaction norm for yearling weight in beef cattle using single-step genomic evaluation. Journal of Animal Science, v. 96, p.27-34, 2018.

PEGOLO, N. T.; OLIVEIRA, H. N.; ALBUQUERQUE, L. G.; BEZERRA, L. A. F.; LÔBO, R. B. Genotype by environment interaction for 450-day weight of Nelore cattle analyzed by reaction norm models. Genetics and Molecular Biology. São Paulo , v. 32, n. 2, p. 281-287, 2009.

PEGOLO, N. T., ALBUQUERQUE, L. G. D., LÔBO, R. B., & DE OLIVEIRA, H. N. Effects of sex and age on genotype× environment interaction for beef cattle body weight studied using reaction norm models. Journal of animal science, v. 89, n. 11, p. 3410-3425, 2011.

RAUW, W. M.; GOMEZ-RAYA, L. Genotype by environment interaction and breeding for robustness in livestock. Frontiers in genetics, v. 6, p. 310, 2015.

ROJAS-DOWNING M. M.; NEJADHASHEMI, A. P.; HARRIGAN, T.; WOZNICKI, S. A. Climate change and livestock: Impacts, adaptation, and mitigation. Science Direct, v. 16, p. 145-163, 2017.

SAYRES, M. A. W. Genetic Diversity on the Sex Chromosomes, Genome Biology and Evolution, v.10,n. 4, p.1064–1078, 2018.

SORENSEN P.; DE LOS CAMPOS, G.; MORGANTE, F.; MACKAY, T.; SORENSEN, D. Genetic Control of Environmental Variation of Two Quantitative Traits of Drosophila melanogaster Revealed by Whole-Genome Sequencing. Genetics.v. 201, n. 2,p.487-497, 2015.

VANDENPLAS, J.; BASTIN, C., GENGLER, N., MULDER, H. A.Genetic variance in micro-environmental sensitivity for milk and milk quality in Walloon Holstein cattle. Journal Dairy Science. v.96, p.5977–5990, 2013.

Published

2018-06-28

How to Cite

Pereira, R. N., Serodio, R. L., Ventura, H. T., Araújo Neto, F. R., & Pegolo, N. T. (2018). ROBUSTNESS CLUSTERS AS SELECTION CRITERIUM IN GENETIC IMPROVEMENT FOR MITIGATION OF THE IMPACTS OF CLIMATE CHANGE. Revista Brasileira De Engenharia De Biossistemas, 12(2), 152–163. https://doi.org/10.18011/bioeng2018v12n2p152-163

Issue

Section

Regular Section