• L. M. Gonçalves
  • B. D. S. Barbosa
  • G. A. e S. Ferraz
  • D. T. Maciel
  • H. F. D. Santos



Precision Agriculture, Axonopus affinis, Geoprocessing, Unmanned Aircraft Systems (UAS)


High resolution images obtained with the aid of Remotely Piloted Aircraft (RPA), when properly treated, can be a useful tool for the practice of precision agriculture, monitoring the growth and development of the crop on a suitable temporal and spatial scale. In this sense, this work aimed to use images obtained with a digital camera coupled to a RPA to analyze the spatial and temporal variability of the MPRI vegetation (IV) index applied in a São Carlos grass production area. The images were collected during the period from December 2016 to March 2017, using an autonomous flight quadricopter with RGB camera and flight height of 50 m. The image processing and the MPRI IV application were performed using a free geoprocessing software. Average MPRI values ​​were generated for all scenes. It was possible to detect the variability of MPRI in all scenes. A determination index (R²) of 0.89 was found due to the correlation between MPRI values ​​and time after grass cutting. It can be inferred from the results obtained that the use of this technology has great potential for monitoring and evaluation of the areas cultivated with grass.


Download data is not yet available.


BALLESTEROS, R.; ORTEGA, J. F.; MORENO, M. A. Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precision Agriculture, v. 15, n. 6, p. 579-592, 2014a.

BALLESTEROS, R.; HERNÁNDEZ, D.; ORTEGA, J. F.; MORENO, M. A. Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part II: application to maize and onion crops of a semi-arid region in Spain. Precision Agriculture, v. 15, n. 6, p. 593-614, 2014b.

BATER, C. W.; COOPS, N. C.; WULDER, M. A.; HILKER, T.; NIELSEN, S. E.; MCDERMID, G.; STENHOUSE, G. B. Using digital time-lapse cameras to monitor species-specific understorey and overstorey phenology in support of wildlife habitat assessment. Environmental monitoring and assessment, v. 180, n. 1, p. 1-13, 2011.

CANDIAGO, S.; REMONDINO F.; GIGLIO, de M.; DUBBINI, M.; GATTELI, M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, Basel, v. 7, n. 4, p. 4026-4047, 2015.

DELEGIDO, J.; VERRELST, J.; MEZA, C. M.; RIVERA, J. P.; ALONSO, L.; MORENO, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. European Journal of Agronomy, v. 46, p. 42-52, 2013.

DEMARCHI, J. C.; PIROLI, E. L.; ZIMBACK, C. R. L. Analise temporal do uso do solo e comparação entre os índices de vegetação NDVI e SAVI no município de Santa Cruz do Rio Pardo–SP usando imagens LANDSAT-5. Raega- O Espaço Geográfico em Análise, v. 21, 2011.

GITELSON, A. A.; KAUFMAN, Y. J.; STARK, R.; RUNDQUIST, D. Novel algorithms for remote estimation of vegetation fraction. Remote sensing of Environment, v. 80, n. 1, p. 76-87, 2002.

LEBOURGEOIS, V.; BÉGUÉ, A.; LABBÉ, S.; MALLAVAN, B.; PRÉVOT, L.; ROUX, B. Can commercial digital cameras be used as multispectral sensors? A crop monitoring test. Sensors, v. 8, n. 11, p. 7300-7322, 2008.

LI, S. & LI, M. Yield estimation of winter wheat in early growth periods by vehicle-borne ground-based remote sensing system. Transactions of the Chinese Society of Agricultural Engineering, 30(3), 120-127. 2014.

LINHARES, M. M. A.; AMARAL, B. A. S.; COSTA, A. P.; ROCHA, N. C. C.; C NDIDO, L. G. Vant’s aplicados ao monitoramento da evolução vegetativa de culturas agrícolas. In: CONGRESSO BRRASILEIRO DE AGRICULTURA DE PRECISÃO, 2014, São Pedro. Anais...São Pedro, 2014. Disponível em: <>. Acesso em: 15 ago 2017.

LINHARES, M. M. A.; ROCHA, N. C. C.; AMARAL, B. A. S. Análise do índice MPRI como indicador vegetativo através da correlação do mesmo com o índice NDVI. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, Foz do Iguaçu, PR, Brasil. Disponível em: < >. Acesso em: 25 mar. 2017.

MULLA, D. J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems engineering, v. 114, n. 4, p. 358-371, 2013.

RANGO, A.; LALIBERTE, A.; STEELE, C.; HERRICK, J. E.; BESTELMEYER, B.; SCHMUGGE, T.; JENKINS, V. Using unmanned aerial vehicles for rangelands: current applications and future potentials. Environmental Practice, v. 8, n. 03, p. 159-168, 2006.

SAKAMOTO, T.; GITELSON, A. A.; NGUY-ROBERTSON, A. L.;ARKEBAUER, T. J.; WARDLOW, B. D.; SUYKER, A. E.; VERMA, S. B.; SHIBAYAMA, M. An alternative method using digital cameras for continuous monitoring of crop status. Agricultural and Forest Meteorology, Amsterdam, v. 154, p. 113-126, 2012.

TORRES-SÁNCHEZ, J.; PENÃ, J. M.; CASTRO, A. I. D.; LÓPEZ-GRANADOS, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture, Amsterdam, v. 103, p. 104-113, 2014.

VON BUEREN, S. K.; BURKART, A.; HUENI, A.; RASCHER, A.; TUOHY, M. P.; YULE, I. J. Deploying four optical UAV-based sensors over grassland: challenges and limitations. Biogeosciences, Göttingen, v. 12, n. 1, p. 163, 2015.

XIAO, J. & MOODY, A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sensing of Environment, Amsterdam, v. 98, n. 2, p. 237-250, 2005.

YANG, Z.; WILLIS, P.; MUELLER, R. Impact of Band-Ratio Enhanced AWIFS Image to Crop Classification Accuracy. Disponível em: <>. Acesso em: 15 ago 2017.



How to Cite

GONÇALVES, L. M.; BARBOSA, B. D. S.; FERRAZ, G. A. e S.; MACIEL, D. T.; SANTOS, H. F. D. SPACE AND TEMPORARY VARIABILITY OF THE INDEX VEGETATION APPLIED TO IMAGES OBTAINED BY A REMOTELY PILOTED AIRCRAF. Revista Brasileira de Engenharia de Biossistemas, Tupã, São Paulo, Brazil, v. 11, n. 4, p. 340–349, 2017. DOI: 10.18011/bioeng2017v11n4p340-349. Disponível em: Acesso em: 3 jul. 2022.



Regular Section