• A. P. de Souza
  • A. A. Tanaka
  • A. C. da Silva
  • E. M. Uliana
  • F. T. de Almeida
  • A. W. A. Gomes
  • A. E. Klar



Minimum data, solar radiation, air temperature, statistical indicative


The aim of this study was to evaluate the errors generated on the reference evapotranspiration (ET0) estimation by Penman-Monteith FAO 56 (PMF 56) when employed simplified models to estimate the global radiation (HG) are based on the air temperature. We evaluated 28 automatic weather stations (EMA's) belonging to the National Institute of Meteorology (INMET) network, in different biomes of Mato Grosso state. Was evaluated fifteen simplified models of HG estimate calibrated regionally and five models without calibration. It was used as a reference ETo obtained by PMF 56, with HG measure. The statistical performance were employed mean bias error (MBE), root mean square error (RMSE), adjustmentindex (d) and the cumulative numerical order of the different models in each index. The regional calibration models HG estimation models improve the estimates of ETo. Can be used Bristow and Campbell (1984) and Goodin et al. (1999), De Jong and Stewart (1993) models to HGestimates and then ET0 to Amazon, Cerrado and Pantanal, respectively.


Download data is not yet available.


ABRAHA, M. G.; SAVAGE, M. J. Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations. Agricultural and Forest Meteorology 148: 401-416, 2008.

ALENCAR, L. P.; SEDIYAMA, G. C.; MANTOVANI, E. C.Estimativa da evapotranspiração de referência (ETo padrão FAO), para Minas Gerais, na ausência de alguns dados climáticos. Engenharia Agrícola 35(1): 39-50, 2015.

ALLEN, R.G., PEREIRA, L.S., HOWELL, T.A., JENSEN, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management v.98, p.899–920, 2011.

ALLEN, R. G.; PEREIRA, L. S.; RAES, D. Crop evapotranspiration. Rome: FAO, 297p (FAO Irrigation and Drainage Paper, 56). 1998.

ALLEN, R. G. Evaluation of procedures for estimating mean monthly solar radiation from air temperature. Rep. United Nations Food and Agriculture Organization (FAO). Rome, Italy. 1995.

ALMOROX, J.; HONTORIA, C.; BENITO, M. Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). Applied Energy 88: 1703-1709, 2011.

ANNANDALE, J.G.; JOVANIC, N. Z.; BENADE, N.; ALLEN, R. G. Software for missing data error analysis of Penman-Monteith reference evapotranspiration. Irrigation Science 21: 57-67, 2002.

ANGSTROM, A. Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society 50(4): 121-126, 1924.

BADESCU, V. Assessing the performance of solar radiation computing models and model selection procedures. Journal of Atmospheric and Solar-Terrestrial Physics 105-106: 119-134, 2013.

BRISTOW, K.L.; CAMPBELL, G.S. On the relationship between incoming solar radiation and daily minimum and maximum temperature. Agricultural and Forest Meteorology 31: 159-166, 1984.

CARVALHO, D. F.; ROCHA, H. S.; BONOMO, R.; SOUZA, A. P. Estimativa da evapotranspiração de referência a partir de dados meteorológicos limitados. Pesquisa Agropecuária Brasileira 50(1): 1-11, 2015.

CARVALHO, D. F.; SILVA, D. G.; SOUZA, A. P.; GOMES, D. P.; ROCHA, H. S. Coeficientes da equação de Angstrom-Prescott e sua influência na evapotranspiração de referência em Seropédica, RJ. Revista Brasileira de Engenharia Agrícola e Ambiental 15(8): 838-844, 2011.

CARVALHO, D. F.; SILVA, L. D. B.; GUERRA, J. G. M.; CRUZ, F. A. Instalação, calibração e funcionamento de um lisímetro de pesagem. Engenharia Agrícola 27: 363-372, 2007.

CHANG, J. Climate and Agriculture: an ecological survey. Aldine Publication Cap. 13 Evapotranspiration, Chicago, p.129-143. 1968.

CHEN, R. S.; ERSI, K.; YANG, J. P.; LU, S. H.; ZHAO, W. Z. Validation of five global radiation models with measured daily data in China. Energy Conversion and Management 45: 1759-1769, 2004.

CUNHA, A. R.; VOLPE, C. A.; ESCOBEDO, J. F. Estimativa da evapotranspiração de referência pelo método de Penman-Monteith (FAO-56) com saldo de radiação medido por diferentes sensores. Agronomía Tropical 58(1): 74-84, 2008.

DAUT, I.; IRWANTO, M.; IRWAN, Y. M.; GOMESH, N.; AHMAD, N. S. Combination of Hargreaves method and linear regression as a new method to estimate solar radiation in Perlis, Northern Malaysia. Solar Energy 85: 2871-2880, 2011.

DE JONG, R.; STEWART, D. W. Estimating global solar radiation from common meteorological observations in western Canada. Journal Plant Science 73: 509-518, 1993.

DONATELLI, M.; CAMPBELL, G. S. A simple model to estimate global solar radiation. In: Proceedings of Fifth ESA Congress, vol. 2, Nitra, Slovak Republic, 28 June–2 July 1998, The Slovak Agriculture University, Nitra, Slovak Republic, p. 133-134. 1998.

DORNELAS, K. D. S.; SILVA, C. L.; OLIVEIRA, C. A. S. Coeficientes médios da equação de Angström-Prescott, radiação solar e evapotranspiração de referência em Brasília. Pesquisa Agropecuária Brasileira 41(8): 1213-1219, 2006.

ELIZONDO, D.; HOOGENBOOM, G.; McCLENDON, R. W. Development of a neural network to predict daily solar radiation. Agricultural and Forest Meteorology 71(1-2): 115-132, 1994. DOI:

EL-SEBAII, A. A.; TRABEA, A. A. Estimation of horizontal diffuse solar radiation in Egypt. Energy Conversion and Management 44(15): 2471-82, 2003.

FALAMARZI, Y.; PALIZDAN, N.; HUANG, Y. F.; LEE, T. S. Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs). Agricultural Water Management 140(10): 26-36, 2014.

GAVILÁN, P.; BERENGENA, J.; ALLEN, R. G. Measuring versus estimating net radiation and soil heat flux: impact on Penman-Monteith reference ET estimates in semiarid regions. Agricultural Water Management 89(3): 275-286, 2007.

GOODIN, D. G.; HUTCHINSON, J. M. S.; VANDERLIP, R. L.; KNAPP, M. C. Estimating solar irradiance for crop modelling using daily air temperature data. Agronomy Journal 91: 845-851, 1999.

HANSEN, J. W. Stochastic daily solar irradiance for biological modelling applications. Agricultural and Forest Meteorology 94(1): 53-63, 1999.

HARGREAVES, G. H. Responding to tropical climates. In: The 1980–81 Food and Climate Review, The Food and Climate Forum, Aspen Institute for Humanistic Studies, Boulder, Colo, p. 29–32. 1981.

HARGREAVES, G. H.; SAMANI, Z. A. Estimating potential evapotranspiration. Journal of Irrigation and Drainage. ASCE, 108: 225-30, 1982.

HOOK, J. E.; McCLENDON, R. W. Estimation of solar radiation data from long-term meteorological records. Agronomy Journal 84(4): 739-42, 1992.

HUNT, L. A.; KUCHAR, L.; SWANTON, C. J. Estimation of solar radiation for use in crop modelling. Agricultural and Forest Meteorology 91: 293-300, 1998.

IQBAL, M. An introduction to solar radiation. Canadá: Academic Press, 1983. 390p.

LIU, D. L.; SCOTT, B. J. Estimation of solar radiation in Australia from rainfall and temperature observations. Agricultural and Forest Meteorology 106(1): 41-59, 2001.

MAHMOOD, R.; HUBBARD, K. G. Effect of time of temperature and estimation of daily solar radiation for the Northern Great Plains, USA. Agronomy Journal 94: 723-733, 2002.

MANCOSU, N.; SNYDER, R. L.; SPANO, D. Procedures to develop a standardized reference evapotranspiration zone map. Journal of Irrigation and Drainage Engineering 140(9): 1-11, 2014.

MARTÍ, P.; ROYUELA, A.; MANZANO, J.; PALAU‑SALVADOR, G. Generalization of ETo ANN models through data supplanting. Journal of Irrigation and Drainage Engineering 136: 161‑174, 2010.

MEZA, F.; VARAS, E. Estimation of mean monthly solar global radiation as a function of temperature. Agricultural and Forest Meteorology 100(2-3): 231-241, 2000.

PEREIRA, A. R.; VILLA NOVA, N. A.; SEDIYAMA, G. C. Evapo(transpi)ração. Piracicaba: FEALQ, 183p. 1997.

PINKER, R. T.; FROUIN, R.; LI, Z. A review of satellite methods to derive surface shortwave irradiance. Remote Sensing Environment 51(1): 108-124, 1995.

RAZIEI, T.; PEREIRA, L. S. Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agricultural Water Management 121(6): 1-18, 2013.

REDDY, K.S.; RANJAN, M. Solar resource estimation using artificial neural networks and comparison with other correlation models. Energy Conversion and Management 44(15): 2519-2530, 2003.

RICHARDSON, C. W.; WRIGHT, D. A. WGEN: A Model for generating Daily Weather Variables. USDA, Agricultural Research Service ARS-8, USA. 1984.

RIVINGTON, M.; MATTHEWS, K. B.; BELLOCCHI, G.; BUCHAN, K. Evaluating uncertainty introduced to process-based simulation model estimates by alternative sources of meteorological data. Agricultural Systems 88(2-3): 451-471, 2006.

SAMANI, Z. Estimating solar radiation and evapotranspiration using minimum climatological data. Journal Irrigation Drainage Engeneering 126(4): 265-267, 2000.

SENTELHAS, P. C.; GILLESPIE,T. J.; SANTOS, E. A. Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canadá. Agricultural Water Management 97(5): 635-644, 2010.

SMITH, M. Report on the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements: Rome: FAO, 54p. 1991.

SOLTANI, A.; MEINKE, H.; DE VOIL, P. Assessing linear interpolation to generate daily radiation and temperature data for use in crop simulations. European Journal Agrononomy 21: 133-148, 2004.

SOUZA, A. P.; ESCOBEDO, J. F. Estimativas da radiação global incidente em superfíciesinclinadas com base na razão de insolação. Revista Brasileira de Ciências Agrárias 8(3): 483-491, 2013.

SOUZA, A. P.; MOTA, L. L.; ZAMADEI, T.; MARTIM, C. C.; ALMEIDA, F. T.; PAULINO, J. Classificação climática e balanço hídrico climatológico no estado de Mato Grosso. Nativa 1(1): 34-43, 2013.

SOUZA, A. P.; CARVALHO, D. F.; SILVA, L. D. B.; ALMEIDA, F. T.; ROCHA, H. S. Estimativas da evapotranspiração de referência em diferentes condições de nebulosidade. Pesquisa Agropecuária Brasileira 46(3): 219-228, 2011.

TANAKA, A. A.; SOUZA, A. P.; KLAR, A. E.; SILVA, A. C.; GOMES, A. W. A. Estimativas da evapotranspiração de referência para o Estado de Mato Grosso por métodos simplificados. Pesquisa Agropecuária Brasileira 51(2): 91-104, 2016.

THORNTON, P. E.; RUNNING, S. W. An improved algorithm for estimating incident solar radiation from measurements of temperature, humidity and precipitation. Agricultural and Forest Meteorology 93: 211–228, 1999.

TODOROVIC, M.; KARIC, B.; PEREIRA, L. S. Reference evapotranspiration estimate with limited weather data across a range of Mediterranean climates. Journal of Hydrology 481(1): 166-176, 2013.

TRNKA, M.; ZALUD, Z.; EITZINGER, J.; DUBROVSKÝ, M. Global solar radiation in Central European lowlands estimated by various empirical formulae. Agricultural and Forest Meteorology 131: 54-76, 2005.

ZANETTI, S. S.; SOUZA, E. F; CARVALHO, D. F. de; BERNARDO, S. Estimação da evapotranspiração de referência no Estado do Rio de Janeiro usando redes neurais artificiais. Revista Brasileira de Engenharia Agrícola e Ambiental 12(2): 174-180, 2008.

WEISS, A.; HAYS, C. J.; HU, Q.; EASTERLING, W. E. Incorporating bias error in calculating solar irradiance: implications for crop yield simulations. Agronomy Journal 93: 1321–1326, 2001.

WU, G., LIN, Y., WANG, T. Method and strategy for modeling daily global solar radiation with measured meteorological data- a case study in Nanchang station, China. Energy Conversion and Management 48(9): 2447–2452, 2007.

YIN, Y.; WU, S.; ZHENG, D.; YANG, Q. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China. Agricultural Water Management 95(1): 77-84, 2008.




How to Cite

de Souza, A. P., Tanaka, A. A., da Silva, A. C., Uliana, E. M., de Almeida, F. T., Gomes, A. W. A., & Klar, A. E. (2016). REFERENCE EVAPOTRANSPIRATION BY PENMAN–MONTEITH FAO 56 WITH MISSING DATA OF GLOBAL RADIATION. Revista Brasileira De Engenharia De Biossistemas, 10(2), 217–233.



Regular Section