• R. Müller
  • A. Feiden
  • F.S. Marques
  • L.T. Lucio
  • A.G. Mari



methane, sulfidric gas, purification system


Processes for biogas production are fine resolved commercially in Brazil. However, biogas is not robust to the point of being understood by agroindustry as a product, which can generate electrical, thermal or vehicular energy, because its purification process still lacks technology for low cost, especially for small and medium sized agroindustries. The objective of this study is to evaluate the use of biological desulfurization process in Brazil.


Download data is not yet available.


BEN - Balanço Energético Nacional. Relatório síntese, ano base 2013. Rio de Janeiro: Empresa de Pesquisa Energética. 2014. 54 p.

BOTHEJU, D.; SAMARAKOON, G.; CHEN, C.; BAKKE, R. An experimental study on the effects of oxygen in bio-gasification - Part 1. Renewable Energies & Power Quality Journal. Granada, v. 8, p. 690-692, 2010.

BRIZIO, E. Ecosustainable Biomethane and fertilizer production through anaerobic co-digestion of animal manure and energy crops. Tese (XXIII PhD in Chemical Engineering) – Dipartimento Scienza Applicata e Tecnologia DISTA, Politecnico Di Torino, Turim, Itália. 2012. 122 p.

BROCH, D. L. et al. Produtividade da soja no cerrado influenciada pelas fontes de enxofre. Revista Ciência Agronômica. Maracaju, v. 42, p. 791-796, 2011.

DEUBLEIN, D.; STEINHAUSER, A. Biogas from waste and renewable resources. 2º ed. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA. 2011. 532 p.

FRARE, M. L.; GIMENES, L. M.; PEREIRA, C. N. Correlações para estimativas de custos na remoção de ácido sulfídrico de biogás. Acta Scientiarum. Technology. Maringá, v. 28, p. 29-37, 2006.

IPARDES – Instituto Paranaense de Desenvolvimento Econômico e Social. Paraná em números. Curitiba: IPARDES. 2014. 37 p.

KRICH, K. et al. Biomethane from Dairy Waste - A Sourcebook for the Production and Use of Renewable Natural Gas in California. California: Clear Concepts. 2005. 282 p.

LEE Y. et al. Pilot-scale study of horizontal anaerobic digester for biogas production using food waste. World Academy of Science, Enginnering and Technology. Suwon, v. 5, p. 1605-1608, 2011.

MOLLEKOPF, N.; POLSTER, A.; BRUMMACK, J. Verbesserung von Entschwefelungsverfahren in landwirtschaftlichen Biogasanlagen. Dresden: Dresden University of Technology. 2006. 112 p.

NAEGELE et al. Effects of temperature, pH and O2 on the removal of hydrogen sulfide from biogas by external biological desulfurization in a full scale fixed-bed trickling bioreactor (FBTB). International Journal Agricultural and Biological Engineering. v. 6, p. 69-81, 2013.

PORPATHAM, E.; RAMESH, A.; NAGALINGAM B. Investigation on the effect of concentration of methane in biogas when used as a fuel for a spark ignition engine. Fuel. Chennai, v. 87, p. 1651-1659, 2008.

RYCKEBOSCH, E.; DROUILLON, M.; VERVAEREN, H. Techniques for transformation of biogas to biomethane. Biomass and Bioenergy. Kortrijk , v. 35, p. 1633-1645, 2011.

SANTOS, P. Guia Técnico de Biogás. CCE - Centro para a Conservação de Energia. Portugal: AGEEN, 2000. 117 p.

SYED, M. et al. Removal of hydrogen sulfide from gas streams using biological processes – a review. Canadian Biosystems Engineering, v. 48, p. 2.1–2.14, 2006.

USDA – United States Department of Agriculture. Foreign Agricultural Service. Washington: United States Department of Agriculture. 2014. 37 p.

WELLINGER, A.; LINDBERG, A. Biogas Upgrading and Utilisation. IEA Bioenergy Task 24: Energy from Biological Conversion of Organic Waste. 2005. 20p.



How to Cite

MÜLLER, R.; FEIDEN, A.; MARQUES, F.; LUCIO, L.; MARI, A. BIOLOGICAL DESULFURIZATION OF THE BIOGAS IN ENVIRONMENTAL CONDITIONS OF BRAZIL. Revista Brasileira de Engenharia de Biossistemas, Tupã, São Paulo, Brazil, v. 8, n. 1, p. 8–12, 2014. DOI: 10.18011/bioeng2014v8n1p8-12. Disponível em: Acesso em: 1 dec. 2021.