Kinetic modeling and neuro-fuzzy application in ethanol production

Authors

  • Emmanuel Zullo Godinho Department of Exact Sciences, Sacred Heart University Center (UNISAGRADO), Bauru-SP, Brazil
  • Caetano Dartiere Zulian Fermino Department of Exact Sciences, Sacred Heart University Center (UNISAGRADO), Bauru-SP, Brazil
  • Ricardo Marques Barreiros Department of Forest Science, São Paulo State University (FCA UNESP), Botucatu-SP, Brazil

DOI:

https://doi.org/10.18011/bioeng.2025.v19.1264

Keywords:

Neuro-Fuzzy, Ethanol production, Kinetic modeling, Artificial neural networks, Fermentation optimization

Abstract

This study presents the application of kinetic modeling and Neuro-Fuzzy techniques in ethanol production. The research aims to optimize the fermentation process by employing the Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict ethanol yield under different conditions. Initially, sugarcane juice was used as a raw material and subjected to fractional distillation to obtain ethanol. The experimental data were analyzed using artificial neural networks and fuzzy logic to develop a predictive model. The ANFIS hybrid model demonstrated high accuracy in forecasting ethanol production, allowing for process optimization and cost reduction. Additionally, the kinetic analysis of fermentation provided insights into substrate consumption and ethanol yield efficiency. The results indicate that the Neuro-Fuzzy approach is a powerful tool for improving bioethanol production processes, enhancing both efficiency and sustainability.

Downloads

Download data is not yet available.

References

Bailey, J. E., & Ollis, D. F. (2012). Biochemical engineering fundamentals (2nd ed.). McGraw-Hill.

Caneppele, F. D. L., & Seraphim, O. J. (2010). Application of fuzzy theory in the control of alternative energy generation systems. Energia na Agricultura, 25(3), 24–41. https://doi.org/10.17224/EnergAgric.2010v25n3p24-41.

Fan, S., Xiao, Z., Tang, X., Chen, C., Zhang, Y., Deng, Q., Yao, P., Li, W. (2014). Inhibition effect of secondary metabolites accumulated in a pervaporation membrane bioreactor on ethanol fermentation of Saccharomyces cerevisiae. Bioresource Technology. 162, 8-13. https://doi.org/10.1016/j.biortech.2014.03.140.

Fermino, C. D. Z., Antoniazzi, M. A. S., Ribeiro, M. M., Balsi, L. P., Damasceno, G. A. B., & Godinho, E. Z. (2024). Relato de aula prática: produção experimental de biodiesel usufruindo de óleo de soja e rota metílica. Revista Sodebras, 19(217), 52-60. https://doi.org/10.29367/issn.1809-3957.2024.01.217.52.

Ferro, J. V. (2023). Modeling, simulation, control and optimization of alcoholic fermentation process of Saccharomyces cerevisiae [Undergraduate monograph, Universidade Federal de Alagoas]. Repositório Institucional da UFAL. https://www.repositorio.ufal.br/jspui/handle/123456789/11888.

Furlong, V. B., Corrêa, L. J., Giordano, R. C., & Ribeiro, M. P. A. (2019). Fuzzy-Enhanced Modeling of Lignocellulosic Biomass Enzymatic Saccharification. Energies, 12(11), 2110. https://doi.org/10.3390/en12112110

Godinho, E. Z., Antoniazzi, M. A. S., & Beladeli, M. N. (2023). Relato de experiência de aula prática de química laboratorial: produção de etanol através do caldo de cana-de-açúcar. Revista Acadêmica Online, IX(46). https://doi.org/10.36238/2359-5787.2023.021.

Godinho, E. Z., Caneppele, F. D. L., Frigo, M. M., & Baitz da Silva, T. K. (2023). Benefícios da energia solar associados a emissão de dióxido de carbono na matriz elétrica brasileira. Revista Tecnologia e Sociedade, 19(58). https://doi.org/10.3895/rts.v19n58.16496.

Govindaswamy, S., Vane., L. M. Vane. (2007). Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Bioresource Technology. 98(3), 677-685. https://doi.org/10.1016/j.biortech.2006.02.012.

Lee, J. M. (2008). Biochemical engineering (5th ed.). Prentice Hall.

Nardez, N. d. N., Krueger, C. P., Jafelice, R. S. d. M., & Schmidt, M. A. R. (2018). The Use of Fuzzy Rule-Based Systems in Determining Horizontal Pco Parameters of Gnss Antennas. Boletim de Ciências Geodésicas, 24(3), 367-382. https://doi.org/10.1590/s1982-21702018000300024.

Saidur, R., Abdelaziz, E. A., Demirbas, A., Hossain, M. S., & Mekhilef, S. (2011). A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews, 15(5), 2262-2289. https://doi.org/https://doi.org/10.1016/j.rser.2011.02.015.

Saleem, B., Badar, R., Judge, M. A., Manzoor, A., Islam, S. u., & Rodrigues, J. J. P. C. (2021). Adaptive recurrent NeuroFuzzy control for power system stability in smart cities. Sustainable Energy Technologies and Assessments, 45, 101089. https://doi.org/https://doi.org/10.1016/j.seta.2021.101089.

Santos, S. F. de M., Moraes, F. da S., Fernandes, L. M., Ribeiro, L. B., & Freire, K. R. de L. (2018). Análise cinética da fermentação das leveduras comerciais S-04 e S-33. Revista Saúde & Ciência, 7(2), 197–208. https://doi.org/10.35572/rsc.v7i2.109.

Smith, A. L., Klenk, N., Wood, S., Hewitt, N., Henriques, I., Yan, N., & Bazely, D. R. (2013). Second generation biofuels and bioinvasions: An evaluation of invasive risks and policy responses in the United States and Canada. Renewable and Sustainable Energy Reviews, 27, 30-42. https://doi.org/https://doi.org/10.1016/j.rser.2013.06.013.

Stanbury, P. F., Whitaker, A., & Hall, S. J. (2016). Principles of fermentation technology (3rd ed.). Butterworth-Heinemann. https://doi.org/10.1016/C2013-0-19089-7.

Vasaki E, M., Karri, R. R., Ravindran, G., & Paramasivan, B. (2021). Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater. Renewable Energy, 168, 204-215. https://doi.org/https://doi.org/10.1016/j.renene.2020.12.038.

Yadav, P. K., Bhasker, R., & Upadhyay, S. K. (2022). Comparative study of ANFIS fuzzy logic and neural network scheduling based load frequency control for two-area hydro thermal system. Materials Today: Proceedings, 56, 3042-3050. https://doi.org/https://doi.org/10.1016/j.matpr.2021.12.041.

Zanardi, M. S., & Costa Jr., E. F. (2015). Influência da réplica experimental nos parâmetros estimados para os modelos cinéticos da produção de etanol em batelada. In VI Encontro Científico de Física Aplicada. Blucher Physics Proceedings, 2(1), 86–90. https://doi.org/10.5151/phypro-vi-efa-021.

Downloads

Published

13-05-2025

How to Cite

Zullo Godinho, E., Dartiere Zulian Fermino, C., & Marques Barreiros, R. (2025). Kinetic modeling and neuro-fuzzy application in ethanol production. Brazilian Journal of Biosystems Engineering, 19. https://doi.org/10.18011/bioeng.2025.v19.1264

Issue

Section

Regular Section