Kinetic modeling and neuro-fuzzy application in ethanol production
DOI:
https://doi.org/10.18011/bioeng.2025.v19.1264Keywords:
Neuro-Fuzzy, Ethanol production, Kinetic modeling, Artificial neural networks, Fermentation optimizationAbstract
This study presents the application of kinetic modeling and Neuro-Fuzzy techniques in ethanol production. The research aims to optimize the fermentation process by employing the Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict ethanol yield under different conditions. Initially, sugarcane juice was used as a raw material and subjected to fractional distillation to obtain ethanol. The experimental data were analyzed using artificial neural networks and fuzzy logic to develop a predictive model. The ANFIS hybrid model demonstrated high accuracy in forecasting ethanol production, allowing for process optimization and cost reduction. Additionally, the kinetic analysis of fermentation provided insights into substrate consumption and ethanol yield efficiency. The results indicate that the Neuro-Fuzzy approach is a powerful tool for improving bioethanol production processes, enhancing both efficiency and sustainability.
Downloads
References
Bailey, J. E., & Ollis, D. F. (2012). Biochemical engineering fundamentals (2nd ed.). McGraw-Hill.
Caneppele, F. D. L., & Seraphim, O. J. (2010). Application of fuzzy theory in the control of alternative energy generation systems. Energia na Agricultura, 25(3), 24–41. https://doi.org/10.17224/EnergAgric.2010v25n3p24-41. DOI: https://doi.org/10.17224/EnergAgric.2010v25n3p24-41
Fan, S., Xiao, Z., Tang, X., Chen, C., Zhang, Y., Deng, Q., Yao, P., Li, W. (2014). Inhibition effect of secondary metabolites accumulated in a pervaporation membrane bioreactor on ethanol fermentation of Saccharomyces cerevisiae. Bioresource Technology. 162, 8-13. https://doi.org/10.1016/j.biortech.2014.03.140. DOI: https://doi.org/10.1016/j.biortech.2014.03.140
Fermino, C. D. Z., Antoniazzi, M. A. S., Ribeiro, M. M., Balsi, L. P., Damasceno, G. A. B., & Godinho, E. Z. (2024). Relato de aula prática: produção experimental de biodiesel usufruindo de óleo de soja e rota metílica. Revista Sodebras, 19(217), 52-60. https://doi.org/10.29367/issn.1809-3957.2024.01.217.52. DOI: https://doi.org/10.29367/issn.1809-3957.2024.01.217.52
Ferro, J. V. (2023). Modeling, simulation, control and optimization of alcoholic fermentation process of Saccharomyces cerevisiae [Undergraduate monograph, Universidade Federal de Alagoas]. Repositório Institucional da UFAL. https://www.repositorio.ufal.br/jspui/handle/123456789/11888.
Furlong, V. B., Corrêa, L. J., Giordano, R. C., & Ribeiro, M. P. A. (2019). Fuzzy-Enhanced Modeling of Lignocellulosic Biomass Enzymatic Saccharification. Energies, 12(11), 2110. https://doi.org/10.3390/en12112110 DOI: https://doi.org/10.3390/en12112110
Godinho, E. Z., Antoniazzi, M. A. S., & Beladeli, M. N. (2023). Relato de experiência de aula prática de química laboratorial: produção de etanol através do caldo de cana-de-açúcar. Revista Acadêmica Online, IX(46). https://doi.org/10.36238/2359-5787.2023.021. DOI: https://doi.org/10.36238/2359-5787.2023.021
Godinho, E. Z., Caneppele, F. D. L., Frigo, M. M., & Baitz da Silva, T. K. (2023). Benefícios da energia solar associados a emissão de dióxido de carbono na matriz elétrica brasileira. Revista Tecnologia e Sociedade, 19(58). https://doi.org/10.3895/rts.v19n58.16496. DOI: https://doi.org/10.3895/rts.v19n58.16496
Govindaswamy, S., Vane., L. M. Vane. (2007). Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Bioresource Technology. 98(3), 677-685. https://doi.org/10.1016/j.biortech.2006.02.012. DOI: https://doi.org/10.1016/j.biortech.2006.02.012
Lee, J. M. (2008). Biochemical engineering (5th ed.). Prentice Hall.
Nardez, N. d. N., Krueger, C. P., Jafelice, R. S. d. M., & Schmidt, M. A. R. (2018). The Use of Fuzzy Rule-Based Systems in Determining Horizontal Pco Parameters of Gnss Antennas. Boletim de Ciências Geodésicas, 24(3), 367-382. https://doi.org/10.1590/s1982-21702018000300024. DOI: https://doi.org/10.1590/s1982-21702018000300024
Saidur, R., Abdelaziz, E. A., Demirbas, A., Hossain, M. S., & Mekhilef, S. (2011). A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews, 15(5), 2262-2289. https://doi.org/https://doi.org/10.1016/j.rser.2011.02.015. DOI: https://doi.org/10.1016/j.rser.2011.02.015
Saleem, B., Badar, R., Judge, M. A., Manzoor, A., Islam, S. u., & Rodrigues, J. J. P. C. (2021). Adaptive recurrent NeuroFuzzy control for power system stability in smart cities. Sustainable Energy Technologies and Assessments, 45, 101089. https://doi.org/https://doi.org/10.1016/j.seta.2021.101089. DOI: https://doi.org/10.1016/j.seta.2021.101089
Santos, S. F. de M., Moraes, F. da S., Fernandes, L. M., Ribeiro, L. B., & Freire, K. R. de L. (2018). Análise cinética da fermentação das leveduras comerciais S-04 e S-33. Revista Saúde & Ciência, 7(2), 197–208. https://doi.org/10.35572/rsc.v7i2.109.
Smith, A. L., Klenk, N., Wood, S., Hewitt, N., Henriques, I., Yan, N., & Bazely, D. R. (2013). Second generation biofuels and bioinvasions: An evaluation of invasive risks and policy responses in the United States and Canada. Renewable and Sustainable Energy Reviews, 27, 30-42. https://doi.org/https://doi.org/10.1016/j.rser.2013.06.013. DOI: https://doi.org/10.1016/j.rser.2013.06.013
Stanbury, P. F., Whitaker, A., & Hall, S. J. (2016). Principles of fermentation technology (3rd ed.). Butterworth-Heinemann. https://doi.org/10.1016/C2013-0-19089-7.
Vasaki E, M., Karri, R. R., Ravindran, G., & Paramasivan, B. (2021). Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater. Renewable Energy, 168, 204-215. https://doi.org/https://doi.org/10.1016/j.renene.2020.12.038. DOI: https://doi.org/10.1016/j.renene.2020.12.038
Yadav, P. K., Bhasker, R., & Upadhyay, S. K. (2022). Comparative study of ANFIS fuzzy logic and neural network scheduling based load frequency control for two-area hydro thermal system. Materials Today: Proceedings, 56, 3042-3050. https://doi.org/https://doi.org/10.1016/j.matpr.2021.12.041. DOI: https://doi.org/10.1016/j.matpr.2021.12.041
Zanardi, M. S., & Costa Jr., E. F. (2015). Influência da réplica experimental nos parâmetros estimados para os modelos cinéticos da produção de etanol em batelada. In VI Encontro Científico de Física Aplicada. Blucher Physics Proceedings, 2(1), 86–90. https://doi.org/10.5151/phypro-vi-efa-021. DOI: https://doi.org/10.5151/phypro-vi-efa-021
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
By publishing in this journal, authors agree to the following terms:
a) Authors retain copyright and grant the journal the right of first publication. The work is simultaneously licensed under the Creative Commons Attribution License, which permits sharing and adaptation of the work with appropriate credit to the authors and the journal.
b) Authors may enter into separate, additional agreements for non-exclusive distribution of the published version of the work (e.g., posting to an institutional repository or inclusion in a book), provided that proper credit is given to the original publication in this journal.