Beta vulgaris production with micronutrient fertigation of seedlings

Authors

  • Pedro Henrique Hortolani Cunha Department of Plant Production, Faculty of Agricultural Sciences (FCA/UNESP), Botucatu/São Paulo, Brazil https://orcid.org/0009-0002-2699-1132
  • Jolinda Mércia de Sá Department of Plant Production, Faculty of Agricultural Sciences (FCA/UNESP), Botucatu/São Paulo, Brazil
  • Antonio Ismael Inácio Cardoso Department of Plant Production, Faculty of Agricultural Sciences (FCA/UNESP), Botucatu/São Paulo, Brazil https://orcid.org/0000-0003-3251-9491

DOI:

https://doi.org/10.18011/bioeng.2024.v18.1234

Keywords:

Beet, Boron, Molybdenum, Nitrogen, Zinc

Abstract

Adequate seedling nutrition is essential for beet production. This study evaluated the effects of applying boron, molybdenum, nitrogen and zinc to seedlings, considering agronomic characteristics and productivity. The experiment was carried out at the São Manuel Experimental Farm of the São Paulo State University, with a randomized block design, seven treatments (fertilizers) and five replicates: T1 - control (without application), T2 - Raiz® (4% N, 5% Mo), T3 - ‘Raiz®+Zintrac®’, T4 - Biotrac® (5.6% N, 2.3% K2O, 1.1% B, 1,1% Zn), T5 - ‘Biotrac®+Zintrac®’, T6 - Zintrac® (1% N, 40% Zn) e T7 - ‘Raiz®+Biotrac®’. Doses of 2.0 mL/L for Biotrac® and 0.5 mL/L for Raiz® and Zintrac® were used. The cultivar used was Betana from Feltrin Sementes®, sown in 200-cell trays. The applications took place 8 days after emergence. Evaluations at transplanting and at the end of the cycle included length, diameter, number of leaves and fresh and dry mass of seedlings and adult plants. Treatment T3 (Raiz® + Zintrac®) showed the highest fresh root mass (120 mg). The combination of Raiz® with Zintrac® and Biotrac® increased the number of leaves (3.6) and fresh root mass (20 mg) compared to the control. The application of Biotrac® alone (T4) resulted in the highest root yields (6.25 and 5.50 t/ha), the largest root diameter (19.68 cm) and the highest fresh leaf mass (125 mg). The Zintrac® (T6) treatment resulted in a higher fresh leaf mass (112.8 mg) than the control. However, the results were below commercial expectations.

Downloads

Download data is not yet available.

References

Alves, A. U., Prado, R. M. de, Gondim, A. R. O. de, Fonseca, I. M., & Filho, A. B. C. (2008). Desenvolvimento e estado nutricional da beterraba em função da omissão de nutrientes. Horticultura Brasileira, 26(2), 292–295. https://doi.org/10.1590/S0102-05362008000200033 DOI: https://doi.org/10.1590/S0102-05362008000200033

Bangar, S. P., Sharma, N., Sanwal, N., Lorenzo, J. M., & Sahu, J. K. (2022). Bioactive potential of beetroot (Beta vulgaris). Food Research International, 158, 111556. https://doi.org/10.1016/j.foodres.2022.111556 DOI: https://doi.org/10.1016/j.foodres.2022.111556

Barlóg, P., Szczepaniak, W., Grzebisz, W., & Poglodzinski, R. (2018). Sugar beet response to different K, Na, and Mg ratios in applied fertilizers. Plant, Soil and Environment, 64(4), 173–179. https://doi.org/10.17221/809/2017-PSE DOI: https://doi.org/10.17221/809/2017-PSE

Broadley, M., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2012). Function of nutrients: Micronutrients. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (2nd ed., pp. 191–248). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-384905-2.00007-8

Castillo-González, J., Ojeda-Barrios, D., Hernández-Rodríguez, A., González-Franco, A. C., Robles-Hermández, L., & López-Ochoa, G. R. (2018). Zinc metalloenzymes in plants. Interciencia, 43(4), 242–248. https://www.redalyc.org/articulo.oa?id=33957240004

Cardoso, A. I. I., Magro, F. O., Júnior, M. X. O., Abrahão, C., Tavares, A. E. B., & Fernandes, D. M. (2017). Accumulation of macronutrients in beetroot plant. Horticultura Brasileira, 35(3), 328–334. https://doi.org/10.1590/S0102-053620170303 DOI: https://doi.org/10.1590/s0102-053620170303

Carmona, V. M. V., Filho, A. B. C., Almeida, H. J. de, Silva, G. C., & Reis, A. R. dos. (2020). Biofortificação agronômica de beterraba com zinco via condicionamento osmótico de sementes. Caatinga, 33(1), 116–123. https://doi.org/10.1590/1983-21252020v33n113rc DOI: https://doi.org/10.1590/1983-21252020v33n113rc

CEAGESP – Companhia de Entrepostos e Armazéns Gerais de São Paulo. (2021, October 17). Beterraba: Guia de identificação. https://ceagesp.gov.br/hortiescolha/hortipedia/beterraba/

Costa, R. M. C., Grangeiro, L. C., Gonçalves, F. C., Santos, E. C., Medeiros, J. F., Sá, F. V. S., Pereira, D. F., Carmo, L. H. A., & Souza, B. P. (2023). Agronomic biofortification and yield of beet fertilization with zinc. Agronomy, 13(6), 1491. https://doi.org/10.3390/agronomy13061491 DOI: https://doi.org/10.3390/agronomy13061491

Elmasry, H. M. M., & Al-Maracy, S. H. A. (2023). Effect of nitrogen and boron fertilization on the productivity and quality of sugar beet. Egyptian Sugar Journal, 20(1), 15–23. https://doi.org/10.21608/esugj.2023.189763.1033 DOI: https://doi.org/10.21608/esugj.2023.189763.1033

FAO – Food and Agriculture Organization of the United Nations. (2022, December 31). FAOSTAT. https://www.fao.org/faostat/en/#data/QCL

Feltrin Sementes. Betana: Beterraba Tall Top. Feltrin Sementes®. https://sfel.me/ficha/1253

Ferreira, D. F. (2011). Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039–1042. https://doi.org/10.1590/S1413-70542011000600001 DOI: https://doi.org/10.1590/S1413-70542011000600001

Füllgrabe, H., Claassen, N., Hilmer, R., Koch, H. J., Dittert, K., & Kreszies, T. (2022). Potassium deficiency reduces sugar yield in sugar beet through decreased growth of young plants. Journal of Plant Nutrition and Soil Science, 185(5), 541–686. https://doi.org/10.1002/jpln.202200064 DOI: https://doi.org/10.1002/jpln.202200064

Gashash, E. A., Ashmawi, A. E., El-Taher, A. M., Omar, M. A., Osman, N. A., Taha, N. M., & Elkelish, A. (2022). Effect of fertilizing with different levels of phosphorus and zinc on the botanical characteristics of table beet (Beta vulgaris L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 1–18. https://doi.org/10.15835/nbha50112579 DOI: https://doi.org/10.15835/nbha50112579

Grangeiro, L. C., Negreiros, M. Z. de, Souza, B. S. de, Azevêdo, P. E. de, Oliveira, S. L. de, & Medeiros, M. A. de. (2007). Acúmulo e exportação de nutrientes e beterraba. Ciência e Agrotecnologia, 31(6), 267–273. https://doi.org/10.1590/S1413-70542007000200001 DOI: https://doi.org/10.1590/S1413-70542007000200001

IEA – Instituto de Economia Agrícola. (2023, December 31). Estatísticas da produção paulista. https://infoiea.agricultura.sp.gov.br/nia1/

IBGE – Instituto Brasileiro de Geografia e Estatística. (2017, December 31). Produção de beterraba. https://www.ibge.gov.br/explica/producao-agropecuaria/beterraba/br

Kirkby, E. A., & Römheld, V. (2007). Micronutrientes na fisiologia de plantas: Funções, absorção e mobilidade. Encarte Técnico, 118(2), 1–24.

Mello, S. C., & Mendonça, J. A. (2017). Olericultura: Nutrição de olerícolas. Curitiba: SENAR-PR.

Oliveira, R. J. P., Gatiboni, L. C., Brunetto, G., Miquelluti, D. J., & Valicheski, R. R. (2017). Resposta da beterraba à adubação com nitrogênio, enxofre e micronutrientes em um Cambissolo Háplico. Horticultura Brasileira, 35(1), 63–68. https://doi.org/10.1590/S0102-053620170110 DOI: https://doi.org/10.1590/s0102-053620170110

Prado, R. M. de, Gondim, A. R. O. de, Filho, A. B. C., Alves, A. U., Correia, M. A. R., & Abreu-Junior, C. H. (2013). Foliar and radicular absorption of boron by beetroot and tomato plants. Communications in Soil Science and Plant Analysis, 44(9), 1435–1443. https://doi.org/10.1080/00103624.2012.762015 DOI: https://doi.org/10.1080/00103624.2012.762015

Tivelli, S. W., Factor, T. L., Teramoto, J. R. S., Fabri, E. G., Moraes, A. R. A., Trani, P. E., & May, A. (2011). Beterraba: Do plantio à comercialização (Série Tecnologia APTA, Boletim Técnico No. 210). Campinas: Instituto Agronômico.

Vasque, H., Aguilar, A. S., Silva, S. C. M., Acevedo, A. F. G., Jácome, L. V., Furnaletto, K. A., Santos, J. A., Lacerda, V. R., & Vieites, R. L. (2021). Agronomic performance of the beet tall top Early Wonder as a function of nitrogen and borate fertilization. Research, Society and Development, 10(3), e13536. https://doi.org/10.33448/rsd-v10i3.13536 DOI: https://doi.org/10.33448/rsd-v10i3.13536

Zhao, X., Song, B., Riaz, M., Li, M., Lal, M. K., Adil, M. F., Huo, J., & Ishfaq, M. (2024). Foliar zinc spraying improves assimilative capacity of sugar beet leaves by promoting magnesium and calcium uptake and enhancing photochemical performance. Plant Physiology and Biochemistry, 206, 108277. https://doi.org/10.1016/j.plaphy.2023.108277 DOI: https://doi.org/10.1016/j.plaphy.2023.108277

Wimmer, M. A., Goldberg, S., & Gupta, U. C. (2015). Boron. In A. V. Barker & D. J. Pilbeam (Eds.), Handbook of plant nutrition (3rd ed., pp. 241–278). CRC Press.

Downloads

Published

05/02/2025

How to Cite

Hortolani Cunha, P. H., Mércia de Sá, J., & Inácio Cardoso, A. I. (2025). Beta vulgaris production with micronutrient fertigation of seedlings. Revista Brasileira De Engenharia De Biossistemas, 18. https://doi.org/10.18011/bioeng.2024.v18.1234

Issue

Section

Regular Section