Treatment of cauliflower seeds with product based on bacillus subtilis aiming plant seedling production, development and productivity.

Authors

  • Emanuele Possas de Souza São Paulo State University, School of Agricultural Sciences, Plant Production Department, Botucatu, SP, Brazil https://orcid.org/0000-0002-8039-2176
  • Sheury Celante Marques São Paulo State University, School of Engineering, Plant Science, Food Technology and Socio-Economics Department, Ilha Solteira, SP, Brazil
  • Flávia Mendes dos Santos Lourenço São Paulo State University, School of Engineering, Plant Science, Food Technology and Socio-Economics Department, Ilha Solteira, SP, Brazil
  • Marco Eustáquio de Sá São Paulo State University, School of Engineering, Plant Science, Food Technology and Socio-Economics Department, Ilha Solteira, SP, Brazil
  • Pâmela Gomes Nakada Freitas São Paulo State University, College of Agricultural and Technological Sciences, Plant Production Department, Dracena, SP, Brazil
  • Antonio Ismael Inácio Cardoso São Paulo State University, School of Agricultural Sciences, Plant Production Department, Botucatu, SP, Brazil

DOI:

https://doi.org/10.18011/bioeng.2024.v18.1220

Keywords:

Brassica oleracea var. botrytis, Biological treatment, Vegetable, Vigor

Abstract

The relation between seed vigor and field performance is not yet fully understood, and it is questionable whether these effects extend to more advanced phenological stages and if they affect crop production. In front of that, the objective of this study was to evaluate the effects on the seedlings and plant production of cauliflower using doses of product based on Bacillus subtilis in seed treatment. The study was conducted in Ilha Solteira city, São Paulo State. The experimental design was a complete randomized design for laboratory analysis and complete randomized blocks for the field stage. Ten treatments were studied in a 2 x 5 factorial scheme with four replications. The treatments consisted of seed treatment of cultivars Sharon and Barcelona with Bacillus subtilis-based product (strain FMT001 containing 3x108 cells cm-3) in five doses (0, 100, 200, 300 and 400 mL per 10 kg of seeds). Seed vigor and crop yield (shoot, root and inflorescence weight, leaf number, inflorescence diameter and yield) characteristics were evaluated. Cultivars averages were compared by Tukey test (p <0.05) and regression for the doses. The results showed that doses of 200 and 400 mL per 10 kg of seeds increased the percentage of strong seedlings of cultivars Barcelona and Sharon, respectively.

Downloads

Download data is not yet available.

References

Abdeljalil, N. O. B.; Vallance, J.; Gerbore, J.; Yacoub, A.; Daami-Remadi, M.; Rey, P. (2021). Combining potential oomycete and bacterial biocontrol agents as a tool to fight tomato Rhizoctonia root rot. Biological Control. 155, 104521. https://doi.org/10.1016/j.biocontrol.2020.104521 DOI: https://doi.org/10.1016/j.biocontrol.2020.104521

Brasil. (2009). Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes (Seed analysis rules). Brasília: Mapa/ACS.

Charlo, H. C. O.; Thuler, R. T.; Bortoli, S. A.; Braz, L. (2006). Inoculação de sementes de repolho com Bactérias Promotoras do Crescimento de Plantas (BPCP) e efeitos na produção. Horticultura Brasileira. 25(1), 4 p.

Ebone, L. A.; Caverzan, A.; Tagliari, A.; Chiomento, J. L. T.; Silveira, D. C.; Chavarria, G. (2020). Soybean Seed Vigor: Uniformity and Growth as Key Factors to Improve Yield. Agronomy. 10(4):545. https://doi.org/10.3390/agronomy10040545 DOI: https://doi.org/10.3390/agronomy10040545

Ferreira, D. F. (2014). Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia. 38(2), 109-112. https://doi.org/10.1590/S1413-70542014000200001 DOI: https://doi.org/10.1590/S1413-70542014000200001

Goulart, L. S., and Tillmann, M. A. A. (2007). Vigor de sementes de rúcula (Eruca sativa L.) pelo teste de deterioração controlada. Revista Brasileira de Sementes. 29(2), 179-186. https://doi.org/10.1590/S0101-31222007000200024 DOI: https://doi.org/10.1590/S0101-31222007000200024

Hortibrasil. (2019). Normas de classificação impressas pelo programa brasileiro para a modernização da horticultura. São Paulo: Secretaria de Agricultura e Abastecimento. https://www.hortibrasil.org.br/2016-06-02-10-49-06.html

Ibanhes Neto, H. F., Silva, A. C.; Sumida, C. H.; Gouveia, M. S.; Pellizzaro, V.; Takahashi, L. S. A. (2021). Physiological potential of green bean seeds treated with Bacillus subtilis. Journal of Seed Science. 43, 1-12. http://dx.doi.org/10.1590/2317-1545v43248603 DOI: https://doi.org/10.1590/2317-1545v43248603

Institute of Agricultural Economics (Instituto de Economia Agrícola- IEA). (2021). Estatísticas da produção paulista. São Paulo: Secretaria de Agricultura e Abastecimento. ciagri.iea.sp.gov.br.

Kapusta-Duch, J.; Szelag-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Kubon, M.; Leszczynska, T.; Borczak, B. (2019). Health-Promoting Properties of Fresh and Processed Purple Cauliflower. Sustainability. 11(15). https://doi.org/10.3390/su11154008 DOI: https://doi.org/10.3390/su11154008

Kikuti, A. L. P. & Marcos Filho, J. (2007). Potencial fisiológico de sementes de couve-flor e desempenho das plantas em campo. Revista Brasileira de Sementes. 29(1), 107-113. https://doi.org/10.1590/S0101-31222007000100015 DOI: https://doi.org/10.1590/S0101-31222007000100015

Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science. 2(1), 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x DOI: https://doi.org/10.2135/cropsci1962.0011183X000200020033x

Mažylytė, R.; Kaziūnienė, J.; Orola, L.; Valkovska, V.; Lastauskienė, E.; Gegeckas, A. (2022). Phosphate Solubilizing Microorganism Bacillus sp. MVY-004 and Its Significance for Biomineral Fertilizers’ Development in Agrobiotechnology. Biology. 11, 254. https://doi.org/10.3390/biology11020254 DOI: https://doi.org/10.3390/biology11020254

Medeiros, J. A. D. D.; Nunes, S. P. L.; Félix, F. C.; Ferrari, C. D. S.; Pacheco, M. V.; Torres, S. B. (2020). Vigor test of (strong) normal intact Amburana cearensis (Allemão) AC Smith seedlings. Journal of Seed Science. 42, e202042011. https://doi.org/10.1590/2317-1545v42221611 DOI: https://doi.org/10.1590/2317-1545v42221611

Mohammed, R. K. A.; Khan, M. R. (2021). Management of root-knot nematode in cucumber through seed treatment with multifarious beneficial microbes in polyhouse under protected cultivation. Indian Phytopathology, 74(4), 1035-1043. https://doi.org/10.1007/s42360-021-00422-3 DOI: https://doi.org/10.1007/s42360-021-00422-3

Nakagawa, J. (1999). Testes de vigor baseados nos desempenhos das plântulas. In: F. C. KRZYZANOWSKI, R. D. Vieira, and J. B. FRANÇA NETO, eds. Vigor de sementes: conceitos e testes. Londrina: ABRATES. p.1-23.

Novello, G.; Cesaro, P.; Bona, E.; Massa, N.; Gosetti, F.; Scarafoni, A.; Todeschini, V.; Berta, G.; Lingua, G.; Gamalero, E. (2021). The Effects of Plant Growth-Promoting Bacteria with Biostimulant Features on the Growth of a Local Onion Cultivar and a Commercial Zucchini Variety. Agronomy.11, 888. https://doi.org/10.3390/agronomy11050888 DOI: https://doi.org/10.3390/agronomy11050888

Oleńska, E.; Małek, W.; Wójcik, M.; Swiecicka, I.; Thijs, S.; Vangronsveld, J. (2020). Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of The Total Environment. 743, 1-21. https://doi.org/10.1016/j.scitotenv.2020.140682 DOI: https://doi.org/10.1016/j.scitotenv.2020.140682

Prasad, M.; Srinivasan, R.; Chaudhary, M.; Choudhary, M.; Jat, L. K. (2019). Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture: Perspectives and Challenges. In: PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental Management, Woodhead Publishing, pp. 129-157. https://doi.org/10.1016/B978-0-12-815879-1.00007-0 DOI: https://doi.org/10.1016/B978-0-12-815879-1.00007-0

Raij, B. van, et al. (2001). Análise química para avaliação da fertilidade de solos tropicais. Campinas: IAC, 285 p.

Reed, R. C.; Bradford, K. J.; Khanday, I. (2022). Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity 128, 450–459. https://doi.org/10.1038/s41437-022-00497-2 DOI: https://doi.org/10.1038/s41437-022-00497-2

Romagn, I. S.; Junges, E.; Karsburg, P.; Pinto, S. D. Q. (2020). Biostimulants in vegetable seeds submitted to germination and vigor tests. Trends in Horticulture, 3(1), 81-86. https://doi.org/10.24294/th.v3i1.1789 DOI: https://doi.org/10.24294/th.v3i1.1789

Saharan, B. S., & Nehra, V. (2011). Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sciences and Medicine Research. 21, 1-30.

Singh, G.; Pujari, M. (2022). Bacillus subtilis as a plant-growth-promoting rhizobacteria: a review. Plant Archives. 22(2). DOI: https://doi.org/10.51470/PLANTARCHIVES.2022.v22.no2.018

Trani, P. E., & Raij, B van. (1997). Hortaliças. In: B. van RAIJ, H. et al., eds. Recomendações de adubação e calagem para o Estado de São Paulo. 2. ed. Campinas: Instituto Agronômico; Fundação IAC. 285 p.

Downloads

Published

2024-09-24

How to Cite

Possas de Souza, E., Marques, S. C., Lourenço, F. M. dos S., Sá, M. E. de, Freitas, P. G. N., & Cardoso, A. I. I. (2024). Treatment of cauliflower seeds with product based on bacillus subtilis aiming plant seedling production, development and productivity. Revista Brasileira De Engenharia De Biossistemas, 18. https://doi.org/10.18011/bioeng.2024.v18.1220

Issue

Section

Regular Section