Modeling and simulation of trifluralin herbicide movement due to its application on soils by chemigation

Authors

  • Davidson Silva Ribeiro Department of Agricultural Engineering, School of Engineering, Universidade Federal de Lavras – UFLA, Lavras, MG, Brazil.
  • Flávia Vilela Corrêa Department of Water Resources, School of Engineering, Universidade Federal de Lavras – UFLA, Lavras, MG, Brazil. https://orcid.org/0000-0001-5179-5577
  • Pâmela Rafanele França Pinto Department of Environmental Engineering, School of Engineering, Universidade Federal de Lavras – UFLA, Lavras, MG, Brazil. https://orcid.org/0000-0002-6394-1217
  • Michael Silveira Thebaldi Department of Agricultural Engineering, School of Engineering, Universidade Federal de Lavras – UFLA, Lavras, MG, Brazil.
  • Fábio Ponciano De Deus Department of Water Resources, School of Engineering, Universidade Federal de Lavras – UFLA, Lavras, MG, Brazil.
  • Adriano Valentim Diotto Department of Water Resources, School of Engineering, Universidade Federal de Lavras – UFLA, Lavras, MG, Brazil. https://orcid.org/0000-0002-4019-2444

DOI:

https://doi.org/10.18011/bioeng.2022.v16.1098

Keywords:

Contaminant transport, Hydrus 2D, Subsurface drip irrigation

Abstract

The Trifluralin (TFN) is a pre-emergent herbicide which is widely used in agriculture. Usually, this pesticide is directly applied to the soil, where it can remain for long periods or can be transported. In this sense, knowing the dynamics of an herbicide soil transport is essential to avoid environmental contamination problems and risks to human health. Thus, this study aims to model and simulate TFN movement on soils with two different textures, a sandy loam and clay loam soil. It was considered that the herbicide was applied via chemigation trough a subsurface drip irrigation system, under a non-steady regime. Therefore, the transport parameters of TFN in these soils and physical-hydric characteristics of these were used, while the physical environment modeling were conducted using the Hydrus 2D software. The results showed that both in sandy and clayey soils, the TFN tends to be retained by the soil, close to where it was applied, not exceeding a layer greater than 2.5 mm outside the dripper radius, even in more favorable conditions such as the presence of irrigation. Finally, it could be concluded that this herbicide movement in the soil is of low potential, due to this product high solid-liquid partition coefficient (Kd), even in sandy soil, which has low cation exchange capacity (CEC).

Downloads

Download data is not yet available.

References

Cai, Y., Zhao, X., Wu, P., Zhang, L., Zhu, D., Chen, J., Lin, L. (2019). Ceramic patch type subsurface drip irrigation line: construction and hydraulic properties. Biosystems Engineering, 182, 29–37. https://doi.org/10.1016/j.biosystemseng.2019.03.005 DOI: https://doi.org/10.1016/j.biosystemseng.2019.03.005

Chen, S., Huo, Z., Xu, X., Huang, G. (2019). A conceptual agricultural water productivity model considering under field capacity soil water redistribution applicable for arid and semi-arid areas with deep groundwater. Agricultural Water Management journal, 213, 309–323. https://doi.org/10.1016/j.agwat.2018.10.024 DOI: https://doi.org/10.1016/j.agwat.2018.10.024

Coleman, NV., Rich, DJ., Tang, FHM., Vervoort, RW., Maggi, F. (2020). Biodegradation and abiotic degradation of Trifluralin: a commonly used herbicide with a poorly understood environmental fate. Environmental Science & Technology, 54, 10390–10410. https://doi.org/10.1021/acs.est.0c02070 DOI: https://doi.org/10.1021/acs.est.0c02070

Cruciani, DE., Baptista, GC., Christoffoleti, PJ., Minami, K. (1996). Herbicide behavior in wetland soil with sub-surface drainage. Scientia agricola, 53, 316–323. https://doi.org/10.1590/S0103-90161996000200021 DOI: https://doi.org/10.1590/S0103-90161996000200021

Dalri, AB., Coelho, AP., Silva, VC., Faria, RT., Fischer Filho, JA. (2021). ADAPTATION AND RESPONSIVENESS OF SUGARCANE CULTIVARS UNDER IRRIGATED AND RAINFED PRODUCTION SYSTEMS. Engenharia Agrícola, 41(5), 496-503. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v41n5p496-503/2021 DOI: https://doi.org/10.1590/1809-4430-eng.agric.v41n5p496-503/2021

Edeh, IG., Masek, O., Buss, W. (2020). A meta-analysis on biochar’s effects on soil water properties – New insights and future research challenges. Science of the Total Environment journal, 714, 136857. https://doi.org/10.1016/j.scitotenv.2020.136857 DOI: https://doi.org/10.1016/j.scitotenv.2020.136857

Epp, JB., Schmitzer, PR., Crouse, GD. (2018). Fifty years of herbicide research: comparing the discovery of trifluralin and halauxifen-methyl. Pest Management Science, 74(1), 9–16. https://doi.org/10.1002/ps.4657 DOI: https://doi.org/10.1002/ps.4657

Fagundes, EAA., Koetz, M., Rudel, N., Santos, TS., Porto, R. (2012). Infiltration rate and water infiltration by the method in soil of savannah in the district of Rondonópolis. Enciclopédia Biosfera, Centro Científico Conhecer - Goiânia, 8(14), 369–378. http://www.conhecer.org.br/enciclop/2012a/agrarias/determinacao.pdf

Faria, FHS. (2011). Sorção e mobilidade da Trifluralina em dois solos do norte de Minas Gerais [Doctorate thesis, Universidade Federal de Lavras]. Institutional Repository http://repositorio.ufla.br/jspui/handle/1/3298

Friedrich, K., Silveira, GR., Amazonas, JC., Gurgel, AM., Almeida, VES., Sarpa, M. (2021). International regulatory situation of pesticides authorized for use in Brazil: potential for damage to health and environmental impacts. Cadernos de Saúde Pública, 37, e00061820. https://doi.org/10.1590/0102-311X00061820 DOI: https://doi.org/10.1590/0102-311x00061820

Hatzisymeon, M., Tataraki, D., Rassias, G., Aggelopoulos, CA. (2021). Novel combination of high voltage nanopulses and in-soil generated plasma micro-discharges applied for the highly efficient degradation of trifluralin. Journal of Hazardous Materials, 415, 125646. https://doi.org/10.1016/j.jhazmat.2021.125646 DOI: https://doi.org/10.1016/j.jhazmat.2021.125646

Lelis Neto, JA., Miranda, JH., Grigolon, GB., Kamogawa, MY., Teixeira, MB., Silva, NF. (2020). Nitrate and Potassium transport and adsorption in soil columns under vinase application. Revista Brasileira de Agricultura Irrigada, 11(6), 1797–1803. https://doi.org/10.7127/rbai.v11n600587 DOI: https://doi.org/10.7127/rbai.v11n600587

Li, Y., Li, C., Li, B., Ma, Z. (2021). Trifluralin residues in soils from main cotton fields of China and associated ecological risk. Chemosphere, 284, 131300. https://doi.org/10.1016/j.chemosphere.2021.131300 DOI: https://doi.org/10.1016/j.chemosphere.2021.131300

Lima, PLT. (2011). Application of trifluralin in root intrusion control of subsurface drip under coffee. [Master´s dissertation, Universidade Federal de Lavras]. Institutional Repository http://repositorio.ufla.br/jspui/handle/1/3042

Lima, PLT., Colombo, A., Lima, LA., Thebaldi, MS., Colares, MFB., Gatto, RF. (2014). Doses and frequency of trifluralin as inhibitor of root intrusion in subsurface drip irrigation of coffee plants. Irriga, 19(1), 25–34. ISSN 1808-3765 DOI: https://doi.org/10.15809/irriga.2014v19n1p25

Maggi, F., Tang, FHM., La Cecilia, D., McBratney, A. (2019). PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Scientific data, 6(170). https://doi.org/10.1038/s41597-019-0169-4 DOI: https://doi.org/10.1038/s41597-019-0169-4

Mendonça, TG., Silva, MB., Pires, RCM., Souza, CF. (2020). Deficit irrigation of subsurface drip-irrigated grape tomato. Engenharia Agricola-Jaboticabal, 40(4), 453–461. https://doi.org/10.1590/1809-4430-Eng.Agric.v40n4p453-461/2020 DOI: https://doi.org/10.1590/1809-4430-eng.agric.v40n4p453-461/2020

Oliveira, LFC., Martinez, MA., Pruski, FF., Ruiz, HA., Lima, LA. (2000). Solute transport in soil and surface runoff: I – model development and simulation of soil water movement and surface runoff. Revista Brasileira de Engenharia Agrícola e Ambiental, 4(1), 63–69. https://www.scielo.br/j/rbeaa/a/JyJqvKGmy3VM5t8gVnZhVtH/?format=pdf&lang=pt DOI: https://doi.org/10.1590/S1415-43662000000100012

Simões, WL., Calgaro, M., Guimarães, MJM., Oliveira, AR., Pinheiro, MPMA (2018). Sugarcane crops with controlled water deficit in the submiddle São Francisco valley, Brazil. Revista Caatinga, 31(4), 963-971. https://doi.org/10.1590/1983-21252018v31n419rc DOI: https://doi.org/10.1590/1983-21252018v31n419rc

Simunek, J., Sejna, M., Van Genuchten, MT Van. (1999). HYDRUS-2D/MESHGEN-2D: Simulating water flow and solute transport in two-dimensional variably saturated media. Golden: International Groundwater Modeling Centre.

Sorensen, RB., Lamb, MX., Butss, CL. (2021). Corn yield responde to irrigation level, crop rotation and irrigation system. Journal of Crop Improvement. https://doi.org/10.1080/15427528.2021.2005212 DOI: https://doi.org/10.1080/15427528.2021.2005212

Tilley, D., Winger, M., Koziol, D. (2016). USDA Natural Resources Conservation Service. Plant Materials Technical Note 1: What to Do with Irrigation Pivot Corners. West Nacional Technology Support Center, Portland, OR. https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/idpmctn12822.pdf

Wang, H., Wang, N., Quan, H., Zhang, F., Fan, J., Feng, H., Cheng, M., Liao, Z., Wang, X., Xiang, Y. (2022). Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: a global meta-analysis. Agricultural Water Management, 269, 107645. https://doi.org/10.1016/j.agwat.2022.107645 DOI: https://doi.org/10.1016/j.agwat.2022.107645

Wilk, CR., Chang, P (1955). Correlation of diffusion coefficients in dilute solutions. AIChE Journal, 1(2), 264–270. https://doi.org/10.1002/aic.690010222 DOI: https://doi.org/10.1002/aic.690010222

Yost, JL., Huang, J., Hartemink, AE. (2019). Spatial-temporal analysis of soil water storage and deep drainage under irrigated potatoes in the Central Sands of Wisconsin, USA. Agricultural Water Management, 217, 226–235. https://doi.org/10.1016/j.agwat.2019.02.045 DOI: https://doi.org/10.1016/j.agwat.2019.02.045

Zhichkina, L., Nosov, V., Zhichkin, K., Zhenzhebir, V., Abramov, Y., Alborova, M. (2020). Pesticide monitoring of agricultural soil pollution. E3S Web of Conferences, 193. https://doi.org/10.1051/e3sconf/202019301068 DOI: https://doi.org/10.1051/e3sconf/202019301068

Downloads

Published

2022-09-16

How to Cite

Silva Ribeiro, D., Vilela Corrêa, F., Rafanele França Pinto, P., Thebaldi, M. S., Ponciano De Deus, F., & Valentim Diotto, A. (2022). Modeling and simulation of trifluralin herbicide movement due to its application on soils by chemigation. Revista Brasileira De Engenharia De Biossistemas, 16. https://doi.org/10.18011/bioeng.2022.v16.1098

Issue

Section

INOVAGRI Meeting 2021