Study of GHG emissions in Brazil from 1990 to 2030 using system dynamics for simulation

Authors

  • Raphael Gallegos University Center UNA – UNA, Belo Horizonte, MG, Brazil.

DOI:

https://doi.org/10.18011/bioeng.2022.v16.1080

Keywords:

System Dynamics, GHG emissions in Brazil, Renewable energy, Energy matrix, Simulation

Abstract

This work studied five sectors which are responsible for GHG emissions in Brazil, namely: Agriculture, Energy, Land-use Change, Industrial Processes, and Waste. In addition to emissions, the Brazilian National Energy Balance was studied to understand the relationship between the energy matrix and GHG emissions. This entire study was developed using the System Dynamics methodology and, at the end, two scenarios were proposed. In the first scenario, it is possible to observe how GHG emissions are distributed in Brazil, while in the second scenario, it is possible to observe a reduction of about 48.9% of emissions in the country, related to the reduction of Land-use Change and Forestry together with the Energy Sector.

 

 

Downloads

Download data is not yet available.

References

Adger, N., & Coauthors including Fischlin, A. (2007). Summary for policymakers. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel of Climate Change (IPCC), (vii, 973), 7–22. https://doi.org/http://www.ipcc.ch/publications_and_data/ar4/wg2/en/spm.html

Ashrafuzzaman, M., & Furini, G. L. (2019). Climate change and human health linkages in the context of globalization: An overview from global to southwestern coastal region of Bangladesh. Environment International, 127(March), 402–411. https://doi.org/10.1016/j.envint.2019.03.020

Baills, A., Garcin, M., & Bulteau, T. (2019). Assessment of selected climate change adaptation measures for coastal areas. Ocean and Coastal Management, (185), 105059. https://doi.org/10.1016/j.ocecoaman.2019.105059

Cúpula de Ação Climática das NAÇÕES UNIDAS 2019. (2019). Retrieved January 3, 2020, from https://www.un.org/es/climatechange/un-climate-summit-2019.shtml

De Oliveira Moraes, G., Machado, R. I., & Silva, E. J. (2019). Energy efficiency study throughout the industrial operations of a multinational household appliances manufacturer company in Brazil. Procedia CIRP, 80, 228–232. https://doi.org/10.1016/j.procir.2019.01.111

Dias, D. M., Massara, R. L., & Bocchiglieri, A. (2019). Use of habitats by donkeys and cattle within a protected area of the Caatinga dry forest biome in northeastern Brazil. Perspectives in Ecology and Conservation, 17(2), 64–70. https://doi.org/10.1016/j.pecon.2019.04.005

EPE - Empresa de Pesquisa Energética. (2019). Balanço Energético Nacional 2019. Relatório Síntese /. Rio de Janeiro. Retrieved from http://epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-377/topico-470/Relatório Síntese BEN 2019 Ano Base 2018.pdf

Fitton, N., Alexander, P., Arnell, N., Bajzelj, B., Calvin, K., Doelman, J., … Smith, P. (2019). The vulnerabilities of agricultural land and food production to future water scarcity. Global Environmental Change, 58(July), 101944. https://doi.org/10.1016/j.gloenvcha.2019.101944

Johnsson, S., Andersson, E., Thollander, P., & Karlsson, M. (2019). Energy savings and greenhouse gas mitigation potential in the Swedish wood industry. Energy, 187, 115919. https://doi.org/10.1016/j.energy.2019.115919

Lucena, A. F. P., Clarke, L., Schaeffer, R., Szklo, A., Rochedo, P. R. R., Nogueira, L. P. P., … Kober, T. (2014). Climate policy scenarios in Brazil: A multi-model comparison for energy. Energy Economics, 56, 564–574. https://doi.org/10.1016/j.eneco.2015.02.005

Maria, C., Góis, J., & Leitão, A. (2019). Challenges and perspectives of greenhouse gases emissions from municipal solid waste management in Angola. Energy Reports, (xxxx), 22–25. https://doi.org/10.1016/j.egyr.2019.08.074

Mercure, J. F., Paim, M. A., Bocquillon, P., Lindner, S., Salas, P., Martinelli, P., … Vinuales, J. E. (2019). System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus. Renewable and Sustainable Energy Reviews, 105(January), 230–243. https://doi.org/10.1016/j.rser.2019.01.045

Moura, M. S. B. de, Oliveira, L. D. da S., Evangelista, S. R. M., Mouco, M. A. do C., Souza, L. S. B. de, & Silva, T. G. F. da. (2015). Aptidão climática da mangueira frente ao clima atual e aos cenários futuros Magna. Revista Brasileira de Geografia Física, 08, 496–509. Retrieved from https://ainfo.cnptia.embrapa.br/digital/bitstream/item/135820/1/Magna-2015.pdf

Neri, M., Jameli, D., Bernard, E., & Melo, F. P. L. (2019). Green versus green? Adverting potential conflicts between wind power generation and biodiversity conservation in Brazil. Perspectives in Ecology and Conservation, 17(3), 131–135. https://doi.org/10.1016/j.pecon.2019.08.004

Pendrill, F., Persson, U. M., Godar, J., Kastner, T., Moran, D., Schmidt, S., & Wood, R. (2019). Agricultural and forestry trade drives large share of tropical deforestation emissions. Global Environmental Change, 56(March), 1–10. https://doi.org/10.1016/j.gloenvcha.2019.03.002

Rizwan, M., Saif, Y., Almansoori, A., & Elkamel, A. (2019). Environmental performance of municipal solid waste processing pathways. Energy Procedia, 158, 3363–3368. https://doi.org/10.1016/j.egypro.2019.01.957

Stabile, M. C. C., Guimarães, A. L., Silva, D. S., Ribeiro, V., Macedo, M. N., Coe, M. T., … Alencar, A. (2019). Solving Brazil’s land use puzzle: Increasing production and slowing Amazon deforestation. Land Use Policy, (May), 104362. https://doi.org/10.1016/j.landusepol.2019.104362

Waheed, R., Sarwar, S., & Wei, C. (2019). The survey of economic growth, energy consumption and carbon emission. Energy Reports, 5, 1103–1115. https://doi.org/10.1016/j.egyr.2019.07.006

Zang, J. W., Martins, K. F., & Da Fonseca-Zang, W. A. (2018). Life Cycle inventory for biomethane as a diesel substitute for the Brazilian ethanol industry - Case study. Energy Procedia, 153, 444–449. https://doi.org/10.1016/j.egypro.2018.10.048

Downloads

Published

2022-04-20

How to Cite

GALLEGOS, R. Study of GHG emissions in Brazil from 1990 to 2030 using system dynamics for simulation. Revista Brasileira de Engenharia de Biossistemas, Tupã, São Paulo, Brazil, v. 16, 2022. DOI: 10.18011/bioeng.2022.v16.1080. Disponível em: https://seer.tupa.unesp.br/index.php/BIOENG/article/view/1080. Acesso em: 3 jul. 2022.

Issue

Section

Regular Section