Study of GHG emissions in Brazil from 1990 to 2030 using system dynamics for simulation


  • Raphael Gallegos University Center UNA – UNA, Belo Horizonte, MG, Brazil.



System Dynamics, GHG emissions in Brazil, Renewable energy, Energy matrix, Simulation


This work studied five sectors which are responsible for GHG emissions in Brazil, namely: Agriculture, Energy, Land-use Change, Industrial Processes, and Waste. In addition to emissions, the Brazilian National Energy Balance was studied to understand the relationship between the energy matrix and GHG emissions. This entire study was developed using the System Dynamics methodology and, at the end, two scenarios were proposed. In the first scenario, it is possible to observe how GHG emissions are distributed in Brazil, while in the second scenario, it is possible to observe a reduction of about 48.9% of emissions in the country, related to the reduction of Land-use Change and Forestry together with the Energy Sector.




Download data is not yet available.


Adger, N., & Coauthors including Fischlin, A. (2007). Summary for policymakers. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel of Climate Change (IPCC), (vii, 973), 7–22.

Ashrafuzzaman, M., & Furini, G. L. (2019). Climate change and human health linkages in the context of globalization: An overview from global to southwestern coastal region of Bangladesh. Environment International, 127(March), 402–411.

Baills, A., Garcin, M., & Bulteau, T. (2019). Assessment of selected climate change adaptation measures for coastal areas. Ocean and Coastal Management, (185), 105059.

Cúpula de Ação Climática das NAÇÕES UNIDAS 2019. (2019). Retrieved January 3, 2020, from

De Oliveira Moraes, G., Machado, R. I., & Silva, E. J. (2019). Energy efficiency study throughout the industrial operations of a multinational household appliances manufacturer company in Brazil. Procedia CIRP, 80, 228–232.

Dias, D. M., Massara, R. L., & Bocchiglieri, A. (2019). Use of habitats by donkeys and cattle within a protected area of the Caatinga dry forest biome in northeastern Brazil. Perspectives in Ecology and Conservation, 17(2), 64–70.

EPE - Empresa de Pesquisa Energética. (2019). Balanço Energético Nacional 2019. Relatório Síntese /. Rio de Janeiro. Retrieved fromório Síntese BEN 2019 Ano Base 2018.pdf

Fitton, N., Alexander, P., Arnell, N., Bajzelj, B., Calvin, K., Doelman, J., … Smith, P. (2019). The vulnerabilities of agricultural land and food production to future water scarcity. Global Environmental Change, 58(July), 101944.

Johnsson, S., Andersson, E., Thollander, P., & Karlsson, M. (2019). Energy savings and greenhouse gas mitigation potential in the Swedish wood industry. Energy, 187, 115919.

Lucena, A. F. P., Clarke, L., Schaeffer, R., Szklo, A., Rochedo, P. R. R., Nogueira, L. P. P., … Kober, T. (2014). Climate policy scenarios in Brazil: A multi-model comparison for energy. Energy Economics, 56, 564–574.

Maria, C., Góis, J., & Leitão, A. (2019). Challenges and perspectives of greenhouse gases emissions from municipal solid waste management in Angola. Energy Reports, (xxxx), 22–25.

Mercure, J. F., Paim, M. A., Bocquillon, P., Lindner, S., Salas, P., Martinelli, P., … Vinuales, J. E. (2019). System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus. Renewable and Sustainable Energy Reviews, 105(January), 230–243.

Moura, M. S. B. de, Oliveira, L. D. da S., Evangelista, S. R. M., Mouco, M. A. do C., Souza, L. S. B. de, & Silva, T. G. F. da. (2015). Aptidão climática da mangueira frente ao clima atual e aos cenários futuros Magna. Revista Brasileira de Geografia Física, 08, 496–509. Retrieved from

Neri, M., Jameli, D., Bernard, E., & Melo, F. P. L. (2019). Green versus green? Adverting potential conflicts between wind power generation and biodiversity conservation in Brazil. Perspectives in Ecology and Conservation, 17(3), 131–135.

Pendrill, F., Persson, U. M., Godar, J., Kastner, T., Moran, D., Schmidt, S., & Wood, R. (2019). Agricultural and forestry trade drives large share of tropical deforestation emissions. Global Environmental Change, 56(March), 1–10.

Rizwan, M., Saif, Y., Almansoori, A., & Elkamel, A. (2019). Environmental performance of municipal solid waste processing pathways. Energy Procedia, 158, 3363–3368.

Stabile, M. C. C., Guimarães, A. L., Silva, D. S., Ribeiro, V., Macedo, M. N., Coe, M. T., … Alencar, A. (2019). Solving Brazil’s land use puzzle: Increasing production and slowing Amazon deforestation. Land Use Policy, (May), 104362.

Waheed, R., Sarwar, S., & Wei, C. (2019). The survey of economic growth, energy consumption and carbon emission. Energy Reports, 5, 1103–1115.

Zang, J. W., Martins, K. F., & Da Fonseca-Zang, W. A. (2018). Life Cycle inventory for biomethane as a diesel substitute for the Brazilian ethanol industry - Case study. Energy Procedia, 153, 444–449.




How to Cite

GALLEGOS, R. Study of GHG emissions in Brazil from 1990 to 2030 using system dynamics for simulation. Revista Brasileira de Engenharia de Biossistemas, Tupã, São Paulo, Brazil, v. 16, 2022. DOI: 10.18011/bioeng.2022.v16.1080. Disponível em: Acesso em: 3 jul. 2022.



Regular Section