Ability of the Saccharomyces cerevisiae Y904 to tolerate and adapt to high concentrations of selenium


  • Layna Amorim Mota Center for Nuclear Energy in Agriculture, University of São Paulo (CENA-USP), 13416-000, Piracicaba (SP) – Brazil.
  • Ana Paula Maria da Silva Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), 13418-900, Piracicaba (SP) – Brazil. https://orcid.org/0000-0002-1486-9853
  • Eric Alberto da Silva Nuclear and Energy Research Institute, University of São Paulo (IPEN-USP), 05508-000, São Paulo (SP) – Brazil
  • Gabriela Maria Ferreira Lima Leite Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), 13418-900, Piracicaba (SP) – Brazil. https://orcid.org/0000-0002-5298-0173
  • Rubens Perez Calegari Center for Nuclear Energy in Agriculture, University of São Paulo (CENA-USP), 13416-000, Piracicaba (SP) – Brazil. https://orcid.org/0000-0002-9929-4736
  • Antonio Sampaio Baptista Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), 13418-900, Piracicaba (SP) – Brazil.




Cultivation in high selenium, organic selenium, organominerals, selenium tolerance


The alcoholic fermentation industry generates a large surplus of yeasts, which, in turn, have the ability to bioaccumulate minerals and enable their bioavailability after cell autolysis. Among these minerals, selenium (Se) stands out, which participates in the formation of antioxidant enzymes. The objectives of the work were to define the minimum and maximum concentration of Se that yeasts (Saccharomyces cerevisiae – Y904) support and the concentrations that they tolerate once adapted. To this end, a test of tolerance to Se was carried out, using treatments with different concentrations of Se. The adaptive process started at the maximum concentration obtained in the tolerance test of 60 mg mL-1, with increasing addition of 6 mg mL-1, reaching up to 246 mg mL-1 of Se. The macromorphological characteristics and number of colony forming units (CFU) were evaluated. It was identified that yeasts without adaptation grew on substrate containing up to 60 mg mL-1 of Se and those adapted, up to 246 mg mL-1 of Se. In addition to the reduction in yeast growth speed, from the concentration of 84 mg mL-1 of Se in the medium, morphological changes in colony color were observed. It is concluded that non-adapted yeasts support up to 60 mg mL-1 of Se and, after the adaptive process, they support 246 mg mL-1 of Se in the medium after the adaptive process, which adds value to the final product, and makes yeasts suitable for human nutrition as a supplement or even in the formulation of probiotics.


Download data is not yet available.


Abedi, J., Saatloo, M. V., Nejati, V., Hobbenaghi, R., Tukmechi, A., Nami, Y., Khosroushahi, A. Y. (2018). Selenium-enriched Saccharomyces cerevisiae reduces the progression of colorectal cancer. Biological trace element research, 185(2), 424-432. https://doi.org/10.1007/s12011-018-1270-9

Amanullah, M., Zaman, G. S., Rahman, J., Rahman, S. S. (2012) Lipid peroxidation the levels of antioxidant enzymes in hypertension. Free Radicals and Antioxidants, 2(2), 12-18. https://doi.org/10.5530/ax.2012.2.2.3

Arthur, J. R., Mckenzie, R. C., Beckett, G. J. (2003). Selenium in the immune system. The Journal of Nutrition, 133(5), 1457S-1459S. https://doi.org/10.1093/jn/133.5.1457S

Assunção, M. A. D. S. (2011). Avaliação da tolerância ao selénio de diferentes espécies de leveduras em ensaios de fermentação. Dissertation, Universidade Técnica de Lisboa.

Basso, L. C., De Amorim, H. V., De Oliveira, A. J., Lopes M. L. (2008). Yeast selection for fuel ethanol production in Brazil. FEMS yeast research, 8(7),1155-1163. https://doi.org/10.1111/j.1567-1364.2008.00428.x

Bronzetti, G., Cini, M., Andreoli, E., Caltavuturo, L., Panunzio, M., Della Croce, C. (2001). Protective effects of vitamins and selenium compounds in yeast. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 496(1-2), 105-115. https://doi.org/10.1039/B205802M

Desmonts, R. (1996). Tecnologia da produção dos fermentos secos de destilaria. Boletim lnform. da Ass. Paul. Med, 8, 1-7.

Hou, L., Qiu, H., Sun, P., Zhu, L., Chen, F., Qin, S. (2020). Selenium-enriched Saccharomyces cerevisiae improves the meat quality of broiler chickens via activation of the glutathione and thioredoxin systems. Poultry Science, 99(11), 6045-6054. https://doi.org/10.1016/j.psj.2020.07.043

Jobard, M., Rasconi, S., Sime-Ngando, T. (2016). Diversity and functions of microscopic fungi: a missing component in pelagic food webs. Aquatic Sciences, 72(3), 255-268. https://doi.org/10.1007/s00027-010-0133-z

Kaur, T., Bansal, M. P. (2006). Selenium enrichment and anti-oxidant status in baker's yeast, Saccharomyces cerevisiae at different sodium selenite concentrations. Nutricion hospitalaria, 21(6), 704-708.

Kieliszek, M., Blazejak, S., Bzducha-Wróbel, A., Kurcz, A. (2016). Effects of selenium on morphological changes in Candida utilis ATCC 9950 yeast cells. Biological trace element research, 169(2), 387-393. https://doi.org/10.1007/s12011-015-0415-3

Kieliszek, M., Blazejak, S., Bzducha-Wróbel, A., Kot, A. M. (A). (2019). Effect of selenium on growth and antioxidative system of yeast cells. Molecular biology reports, 46(2), 1797-1808. https://doi.org/10.1007/s11033-019-04630-z

Kieliszek, M., Blazejak, S., Bzducha-Wróbel, A., Kot, A. M. (B). (2019). Effect of selenium on lipid and amino acid metabolism in yeast cells. Biological trace element research, 187(1), 316-327. https://doi.org/10.1007/s12011-018-1342-x

Kieliszek, M., Dourou, M. (2021). Effect of Selenium on the Growth and Lipid Accumulation of Yarrowia lipolytica Yeast. Biological Trace Element Research, 199(4), 1611-1622. https://doi.org/10.1007/s12011-020-02266-w

Kitajima, E. W., Leite, B. (1999). Curso introdutório de microscopia eletrônica de varredura, 2ª. Ed. Piracicaba. NAP/MEPA ESALQ. 48p.

Konetzka, W. A. (1977). Microbiology of metal transformations. Microorganisms and minerals, 318-342.

Leite, R. C. D. C., Leal, M. R. L. (2007). O biocombustível no Brasil. Novos estudos CEBRAP, 78, 15-21. https://doi.org/10.1590/S0101-33002007000200003

Marinescu, G., Stoicescu, A. G., Teodorof, L. (2011). Industrial nutrient medium use for yeast selenium preparation. Annals of the University Dunarea de Jos of Galati Fascicle VI-Food Technology, 35(1), 45-53.

Martiniano, S. E., Philippini, R. R., Franco-Marcelino, P. R., Da Silva, S. S. (2020). Effect of selenium uptake on growth metabolism in yeasts for the production of enriched single-cell protein using agro-industrial by-products. Biomass Conversion and Biorefinery, 1-9. https://doi.org/10.1007/s13399-020-00885-w

Meena, K., Sharma, V., Manzoor, M., Aseri, G. K., Sohal, J. S., Singh, D., Sharma, D. (2020). Mineral-enriched yeast biomass: A promising mineral food and feed supplement. New and Future Developments in Microbial Biotechnology and Bioengineering, 155-170. https://doi.org/10.1016/B978-0-12-821007-9.00013-9

Mehdi, Y., Hornick, J. L., Istasse, L., Dufrasne, I. (2013) Selenium in the environment, metabolism and involvement in body functions. Molecules, 18(3), 3292-3311. https://doi.org/10.3390/molecules18033292

Mussatto, S. I., Dragone, G., Guimarães, P. M., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., Teixeira, J. A. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology advances, 28(6), 817-830. https://doi.org/10.1016/j.biotechadv.2010.07.001

Nelson, D. L., Cox, M. M. (2018). Princípios de Bioquímica de Lehninger-7. Artmed Editora.

Neumann, P. M., De Souza, M. P., Pickering, I. J., Terry, N. (2003). Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant, cell & environment, 26(60), 897-905. https://doi.org/10.1046/j.1365-3040.2003.01022.x

Nuttall, K. L. (2006). Evaluating selenium poisoning. Annals of Clinical & Laboratory Science, 36(4), 409-420.

Ogra, Y., Shimizu, M., Takahashi, K., Anan, Y. (2018). Biotransformation of organic selenium compounds in budding yeast, Saccharomyces cerevisiae. Metallomics, 10(9), 1257-1263. https://doi.org/10.1039/c8mt00176f

Ohta, Y., Suzuki, K. T. (2008). Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium. Toxicology and applied pharmacology, 226(2), 169-177. https://doi.org/10.1016/j.taap.2007.09.011

Pankiewicz, U., Sujka, M., Kowalski, R., Mazurek, A., WÅ'odarczyk-Stasiak, M., Jamroz, J. (2017). Effect of pulsed electric fields (PEF) on accumulation of selenium and zinc ions in Saccharomyces cerevisiae cells. Food chemistry, 221, 1361-1370. https://doi.org/10.1016/j.foodchem.2016.11.018

Pedrero, Z., Madrid, Y. (2009). Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Analytica chimica acta, 634(2), 135-152. https://doi.org/10.1016/j.aca.2008.12.026

Pereira, B. R., De Mello, L. M., Dos Reis, D. F., Tambor, J. H. M. (2020). Produção do etanol e sua mitigação de emissão de poluentes. Brasil Para Todos-Revista Internacional, 8(1), 13-21.

Rajashree, K., Muthukumar, T. (2013). Preparation of selenium tolerant yeast Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology Research, 3(3), 46-53.

Riaz, M., Mehmood, K. T. (2012). Selenium in human health and disease: a review. JPMI: Journal of Postgraduate Medical Institute, 26(2).

Rocha, M. S. D., Silva, L. D., Sena, R. C. D., Araújo, T. D. O., Almeida, M. D. D., Sanz-Medel, A., Fernández-Sánchez, M. L. (2018). Single point calibration for quantitative speciation of selenomethionine in yeast Saccharomyces cerevisiae by HPLC-ICP-MS: using reliable, traceable and comparable measurements. Journal of the Mexican Chemical Society, 62(2), 334-347. https://doi.org/10.29356/jmcs.v62i2.471

Roepcke, C. B. S., Vandenberghe, L. P. S., Soccol, C. R. (2011). Optimized production of Pichia guilliermondii biomass with zinc accumulation by fermentation. Animal feed science and technology, 163(1), 33-42. https://doi.org/10.1016/j.anifeedsci.2010.09.018

Santos, C., Fonseca, J. (2013). Selénio: fisiopatologia, clínica e nutrição. Associação Portuguesa de Nutrição Entérica e Parentérica, 8, 1-9.

Stabnikova, O., Ivanov, V., Larionova, I., Stabnikov, V., Bryszewska, M. A., Lewis, J. (2008). Ukrainian dietary bakery product with selenium-enriched yeast. LWT-food Science and Technology, 41(5), 890-895. https://doi.org/10.1016/j.lwt.2007.05.021

StÃ¥hl, A.; Anundi, I.; Högberg, J. (1984). Selenite biotransformation to volatile metabolites in an isolated hepatocyte model system. Biochemical pharmacology, 33(7), 1111-1117. https://doi.org/10.1016/0006-2952(84)90522-7

Stolz, J. F., Basu, P., Santini, J. M., Oremland ,R. S. (2006). Arsenic and selenium in microbial metabolism. Annu. Rev. Microbiol., 60, 107-130. https://doi.org/10.1146/annurev.micro.60.080805.142053

Suhajda, A., Hegoczki, J., Janzso, B., Pais, I., Vereczkey, G. (2000). Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. Journal of Trace Elements in Medicine and Biology, 14(1), 43-47. https://doi.org/10.1016/S0946-672X(00)80022-X

Tinggi, U. (2003). Essentiality and toxicity of selenium and its status in Australia: a review. Toxicology letters, 137(1-2), 103-110. https://doi.org/10.1016/S0378-4274(02)00384-3

Wang, Z., Zhang, L., Tan, T. (2010). High cell density fermentation of Saccharomyces cerevisiae GS2 for selenium-enriched yeast production. Korean Journal of Chemical Engineering, 27(6), 1836-1840. https://doi.org/10.1007/s11814-010-0300-x

White, C., Gadd, G. M. (1987). The uptake and cellular distribution of zinc in Saccharomyces cerevisiae. Microbiology, 133(3), 727-737. https://doi.org/10.1099/00221287-133-3-727




How to Cite

Amorim Mota, L., Maria da Silva, A. P. ., Alberto da Silva, E., Maria Ferreira Lima Leite, G., Perez Calegari, R. ., & Sampaio Baptista, A. . (2022). Ability of the Saccharomyces cerevisiae Y904 to tolerate and adapt to high concentrations of selenium. Revista Brasileira De Engenharia De Biossistemas, 16. https://doi.org/10.18011/bioeng.2022.v16.1066



Regular Section