Research, Sensors, Automation, Precision Agriculture


Data collection and environmental monitoring in agriculture are most complex activities, normally requiring expensive equipment. Data collection should preferably be carried out close to the stratum of plant cultures, as this way obtain reliable data on the microenvironment where the plant is located. The objective this study was to develop a low-cost data collection system to obtain parameters related to luminosity, soil moisture, air humidity and temperature in an agricultural environment. The specific methodology of product development and Arduino prototyping platform were used to assemble the Datalogger system. Functional tests were carried out in two greenhouses A1 and A2 for a period of 24 hours. The system design, with the use of sensor supports, allowed the collection of data without interruption and with adequate accuracy. The Arduino platform and accessory sensors proved to be perfectly applicable for data acquisition and storage in greenhouses. The developed Datalogger prototype showed a cost reduction of 600 to 3000% compared to components available on the market with similar functionalities.


Download data is not yet available.


AGUDO, F. L.; SANTINI, G. A.; PIGATTO S.; GOBBO JÚNIOR, J. A.; BAPTISTA, R. D.; QUEIROZ, T. R. Aplicação da estratégia open innovation na agricultura mundial: contribuições a partir de revisão sistematizada da literatura. Brazilian Journal of Biosystems Engineering, v.14, n.3, p.208-231, 2020.

ALI, A. S.; ZANZINGER, Z.; DEBOSE, D.; STEPHENS, B. Open Source Building Science Sensors (OSBSS): A low-cost Arduino based platform for long-term indoor environmental data collection. Building and Environment, Chicago, IL., v.100, p.114-126, 2016.

BAKER, E. Open source data logger for low-cost environmental monitoring. Biodiversity Data Journal, London v.2, ed.1059, 2014.

BENGHANEM, M. Measurement of meteorological data based on wireless data acquisition system monitoring. Applied Energy, Madinah, A.S. v.86, p.2651-2660, 2009.

FUENTES, M.; VIVAR, M.; BURGOS, J.M.; AGUILERA, J.; VACAS, J. A. Design of an accurate, low-cost autonomous data logger for PV system monitoring using Arduino™ that complies with IEC standards. Solar Energy materials and Solar cells, v.130, p.529-543, 2014.

GOPINATH, A.; ARUN, C.; HANUMANTHAIAH, A.; MURUGAN, R. An Analogy of the Datalogger Implementation in Arduino UNO and PSoC5LP. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), IEEE, pp. 328-332, 2020.

IBERAHIM, H. H.; BASARUDIN, H.; ABU, M. H.; SENG, G. H.; RAMLI, A. F.; SULAIMAN, M. I. Development of Wireless Transmission for Meteorological Stations Data Logging. IEEE, International Conference on Engineering Technology and Technopreneurship (ICE2T), Kuala Lumpur, 2017.

LEE, S.; KIM, Y.; JO, J.; STEPHEN, H. A Framework for Environmental Monitoring with Arduino-based Sensors using Restful Web Service. IEEE, International Conference on Services Computing. Nevada, 2014.

MABROUKI, J.; AZROUR, M.; DHIBA, D.; FARHAOUI, Y.; EL HAJJAJI, S. IoT-based data logger for weather monitoring using arduino-based wireless sensor networks with remote graphical application and alerts. Big Data Mining and Analytics, v. 4, n. 1, p. 25-32, 2021.

MARQUES FILHO, A. C.; RODRIGUES, J. P.; MEDEIROS, S. D. S.; S. R. R. M. Development of an electronic controller for lettuce production in greenhouses. Revista de Agricultura Neotropical, v. 7, n. 3, p.65-72, 2020.

MARTINEZ-SANTOS, J. C.; ACEVEDO-PATINO, O.; CONTRERAS-ORTIZ, S. H. Influence of Arduino on the development of advanced microcontrollers courses. IEEE revista iberoamericana de tecnologias del aprendizaje, v. 12, n. 4, p. 208-217, 2017.

MCROBERTS, M. Arduino básico. Novatec Editora, 2.ed, São Paulo, 2018.

MEGANTORO, P.; WIDJANARKO, A.; RAHIM, R.; KUNAL, K.; ARFIANTO, A. Z. The design of digital liquid density meter based on Arduino. Journal of Robotics and Control, v.1, n.1, p.1-6, 2020.

NÓBREGA, L., GONÇALVES, P., ANTUNES, M., CORUJO, D. Assessing sheep behavior through low-power microcontrollers in smart agriculture scenarios. Computers and Electronics in Agriculture, v.173, 2020.

OLADIMEJI, I.; ADEDIJI, Y. B.; AKINTOLA, J. B.; AFOLAYAN, M. A.; OGUNBIYI, O.; IBRAHIM, S. M.; OLAYINKA, S. Z. Design and construction of an arduino-based solar power parameter-measuring system with data logger. Arid Zone Journal Of Engineering, Technology And Environment, v. 16, n. 2, p. 255-268, 2020.

ROZENFELD, H.; FORCELLINI, F. A.; AMARAL, D. C.; TOLEDO, J. C.; SILVA, S. L.; ALLIPRANDINI, D. H.; SCALICE, R. K. Gestão de desenvolvimento de Produtos. Uma referência para melhoria do processo. São Paulo. Ed. Saraiva, 2015. 542p.

TERUEL, B. J. Controle automatizado de casas de vegetação: Variáveis climáticas e fertigação. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 14, n. 3, p. 237-245, 2010.



How to Cite

MARQUES FILHO, A. C. .; RODRIGUES, J. P.; DAL PONTE, G. B. ARDUINO PLATFORM APPLIED IN THE DEVELOPMENT OF A MICROENVIRONMENTAL DATA COLLECTION SYSTEM IN GREENHOUSES . Revista Brasileira de Engenharia de Biossistemas, Tupã, São Paulo, Brazil, v. 15, n. 2, p. 190–206, 2021. DOI: 10.18011/bioeng2021v15n2p190-206. Disponível em: Acesso em: 17 oct. 2021.