INTERFACE GRÁFICA VIA REDES NEURAIS ARTIFICIAIS: UM ESTUDO DE CASO NA ESTIMATIVA DA PRODUÇÃO DE CAPIM MARANDU EM SISTEMAS INTEGRADOS

Autores

DOI:

https://doi.org/10.18011/bioeng2021v15n2p318-341

Palavras-chave:

Redes neurais artificiais, Experiência do usuário., Capim-marandu., MatLab., Previsão.

Resumo

Através das ferramentas do software MatLab, neste trabalho foi desenvolvido uma interface gráfica para a estimativa de produção de capim-marandu utilizando-se de redes neurais artificiais e das propriedades gráficas disponibilizadas pelo software, visando além da assertividade e eficiência da estimativa, o desenvolvimento da interface de maneira que pessoas leigas ao assunto e à programação, tenham acesso a ferramenta elaborada, valorizando conceitos já estudados de User Experience e podendo assim, ser utilizada em áreas de ensino sobre redes neurais, ampliando o acesso à informação através da interface homem-máquina.

Downloads

Não há dados estatísticos.

Referências

ALVARENGA, R. C.; ALBERNAZ, W. M.; VIANA, M. C. M.; GONTIJO NETO, M. M.; PINTO JUNIOR, E. S. Integração Lavoura-Pecuária-Floresta em latossolo vermelho distrófico de Maravilhas-MG, região do cerrado: implantação do eucalipto e do milho e resultados do primeiro ano. In: CONGRESSO NACIONAL DE MILHO E SORGO, 28.; SIMPÓSIO BRASILEIRO SOBRE A LAGARTA DO CARTUCHO, 4., 2010, Goiânia. Potencialidades, desafios e sustentabilidade: resumos expandidos... Sete Lagoas: ABMS, 2010. P. 1-7.

ANAGU, I.; INGWERSEN, J.; UTERMANN, J. and STRECK, T. Estimation of heavy metal sorption in German soils using artificial neural networks. Geoderma, v. 152, n. 1–2, p. 104-112. 2009. DOI: 10.1016/j.geoderma.2009.06.004

BALA, B. K.; ASHRAF, M. A.; UDDIN, M. A.; JANJAI, S. Experimental and neural network prediction of the performance of a solar tunnel drier for a solar drying jack fruit bulbs and leather. J. Food Proc. Eng. 28, 552–566. 2005. DOI: 10.1111/j.1745-4530.2005.00042.x

BONINI NETO, A.; BONINI, C. S. B.; BISI, B. S.; REIS, A. R.; COLETTA, L. F. S. Artificial Neural Network for Classification and Analysis of Degraded Soils. Revista IEEE América Latina, v. 15, n.3, p. 503-509, 2017. DOI: 10.1109/TLA.2017.7867601

BRAGA A. DE P.; CARVALHO A. P. DE LEON E F., LUDERMIR T. B. Redes neurais artificiais: teoria e aplicações. 2. ed. Rio de Janeiro: LTC Editora, 2007.

BUCENE, L. C.; RODRIGUES, L. H. A. Utilização de redes neurais artificiais para a avaliação de produtividade do solo, visando classificação de terras para irrigação. Revista Brasileira de Engenharia Agrícola e Ambiental, v.8, n. 2/3, p.326- 329, 2004. DOI: 10.1590/S1415-43662004000200025

BENINI, L. C. Estimação da densidade de solos utilizando sistemas de inferência fuzzy. 2007. 210 f. Tese (Doutorado em Agronomia/ Energia na Agricultura) – Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, 2007.

BEUCHERA, A.; SIEMSSENA, R.; FRÖJDÖA, S.; ÖSTERHOLMA, P.; MARTINKAUPPIB, A. and EDÉNB, P. Artificial neural network for mapping and characterization of acid sulfate soils: Application to Sirppujoki River catchment, southwestern Finland. Geoderma. v. 247–248, p. 38–50, 2015. DOI: 10.1016/j.geoderma.2014.11.031

CHITERO, J. G. M. Qualidade física de um solo degradado em recuperação via redes neurais artificiais. 2020. 62 f. Dissertação (mestrado) – Programa de Pós-graduação em sistemas de Produção. Universidade Estadual Paulista, Ilha Solteira, 2020.

CHOU, J. R. A psychometric user experience model based on fuzzy measure approaches. Kaohsiung City, v. 1, n. 1, p. 1-810, outubro de 2018. DOI: 10.1016/j.aei.2018.10.010

DE SOUZA, A. V.; BONINI NETO, A.; PIAZENTIN, J. C.; DAINESE JUNIOR, B. J.; GOMES, E. P.; BONINI, C. S. B.; PUTTI, F. F. Artificial neural network modelling in the prediction of bananas' harvest. SCIENTIA HORTICULTURAE, v. 257, p. 108724, 2019. DOI: 10.1016/j.scienta.2019.108724

DIAMANTOPOULOU, M. J. Artificial neural networks as an alternative tool in pine bark volume estimation. Comp. Elect. Agric. 48, 235–244. 2005. DOI: 10.1016/j.compag.2005.04.002

FERREIRA, B.; CONTE, T; BARBOSA,S. D. J., Eliciting Requirements Using Personas and Empathy Map to Enhance the User Experience, 2015 29th Brazilian Symposium on Software Engineering, Belo Horizonte 2015, p. 80-89, doi: 10.1109/SBES.2015.14.

HAYKIN S. Neural networks: a comprehensive foundation. 2. ed. Tsinghua University Press. 2001.

JIANG, S.D.; JIANG, D.; YANG, X.; CLINTON, N.; WANG, N. An artificial neural network model for estimating crop yields using remotely sensed information. Int. J. Remote Sens. 25, 1723–1732. 2004. DOI: 10.1080/0143116031000150068

LALLEMAND, C.; GRONIER, G.; KOENIG, V. User experience: a concept without consensus? Exploring practioners' perspectives through an international survey. Computer in human behavior v.43, p 35-48, 2015. DOI: 10.1016/j.chb.2014.10.048

LICZNAR, P. AND NEARING, M. A. Artificial neural networks of soil erosion and runoff prediction at the plot scale. Catena, v. 51, n. 2, p. 89-114, 2003. DOI: 10.1016/S0341-8162(02)00147-9

MAPA. Plano agrícola e pecuário 2014/2015: relatório do ano de 2014. Brasil. MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO. 2014. 91p. Disponivel em: <http://www.agricultura.gov.br/arq_editor/PAP%202014-2015.pdf>. Acesso em: 14 de junho de 2020.

MATHWORKS. Global Optimization Toolbox User's Guide. Natick, Massachusetts: The Math Works. Inc. Disponível em: <https://www.mathworks.com/products/matlab.html>. Acesso em: 11 de junho de 2020.

MOUAZEN, A.M.; KUANG, B.; DE BAERDEMAEKER, J. AND RAMON, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, v. 158, n. 1–2, p. 23-31, 2010. DOI: 10.1016/j.geoderma.2010.03.001

MOVAGHARNEJAD, K.; NIKZAD, M. Modelling of tomato drying using artificial neural network. Comp. Elect. Agric., v. 59, n.1-2, p. 78–85. 2007. DOI: 10.1016/j.compag.2007.05.003

SOUZA, J. F. D.; PERUSSO, R. L. S.; BONINI, C. S. B.; SOUZA, C. T. ; LUPATINI, G. C. ; ANDRIGHETTO, C. ; MATEUS, G. P. ; PEDRO, F. G. . Atributos Físicos, Matéria Orgânica do Solo e Produção de Capim Marandu em Sistema de Integração Lavoura-Pecuária-Floresta. REVISTA BRASILEIRA DE ENGENHARIA DE BIOSSISTEMAS (UNICAMP), v. 13, p. 51-64, 2019.

SAVIN, I.Y.; STATHAKIS, D.; NEGRE, T.; ISAEV, V.A. Prediction of crop yields with the use of neural networks. Russian Agric. Sci., v. 33, p. 361–363. 2007. DOI: 10.3103/S1068367407060031

SILVA, A. A. V.; SILVA, I. A. F.; TEIXEIRA FILHO, M. C. M.; BUZETTI, S.; TEIXEIRA, M. C. M. Estimativa da produtividade de trigo em função da adubação nitrogenada utilizando modelagem neurofuzzy. Revista Brasileira de Engenharia Agrícola e Ambiental (Impresso), v. 18, n. 2, p. 180-187, 2014. DOI: 10.1590/S1415-43662014000200008

SILVA, R. A. C. Inteligência artificial aplicada à ambientes de Engenharia de Software: Uma visão geral. INFOCOMP is a Computer Science Journal. v. 4, n. 4, p. 27-37, 2005.

SILVEIRA, C. T.; OKA-FIORI, C.; SANTOS, L. J. C.; SIRTOLI, A. E.; SILVA, C. R.; BOTELHO, M. F. Soil prediction using artificial neural networks and topographic attributes. Geoderma, v. 195–196, p. 165-172, 2013. DOI: 10.1016/j.geoderma.2012.11.016

SOARES, D. G; TEIVE, R. C. G. Estudo comparativo entre as redes neurais MLP e RBF para previsão de cheias em curto prazo. Revista de Informática Teórica e Aplicada, v. 22, n. 2, p. 1-20, 2015. DOI: 10.22456/2175-2745.53236

UNO, Y.; PRASHER, S.O.; LACROIX, R.; GOEL, P.K.; KARIMI, Y.; VIAU, A.; PATEL, R.M. Artificial neural networks to predict corn yield from compact airborne spectrographic imager data. Comp. Elect. Agric., v. 47, n.2, p. 149–161, 2005. DOI: 10.1016/j.compag.2004.11.014

RODRIGUES, L. F. Capim Marandu a doses de nitrogênio sob estratégias de manejo do pastejo. 2016. 38f. Dissertação (Mestrado Acadêmico) - Universidade Federal do Tocantins – Câmpus Universitário de Araguaína – Pós-Graduação em Ciência Animal. – Araguaína, TO, 2016.

ZHANG, W.; BAI, X.C.; LIU, G. Neural network modeling of ecosystems: a case study on cabbage growth system. Ecol. Model, v. 201, n. 3, p. 317-325, 2007. DOI: 10.1016/j.ecolmodel.2006.09.022

Downloads

Publicado

14-10-2021

Como Citar

Bonini Neto, A. ., Lopes Criscimani, A., dos Santos Batista Bonini, C., Dias Souza , J. F. ., Lozano Oliverio, G., Correia de Mattos Baretto, V., & Andrighetto, C. (2021). INTERFACE GRÁFICA VIA REDES NEURAIS ARTIFICIAIS: UM ESTUDO DE CASO NA ESTIMATIVA DA PRODUÇÃO DE CAPIM MARANDU EM SISTEMAS INTEGRADOS. Revista Brasileira De Engenharia De Biossistemas, 15(2), 318–341. https://doi.org/10.18011/bioeng2021v15n2p318-341

Edição

Seção

Regular Section