

REFERENCE EVAPOTRANSPIRATION BY PENMAN–MONTEITH FAO 56 WITH MISSING DATA OF GLOBAL RADIATION

A. P. de Souza^{1*}, A. A. Tanaka¹, A. C. da Silva¹, E. M. Uliana¹, F. T. de Almeida¹, A. W. A. Gomes², A. E. Klar³

¹ UFMT - Univ Federal de Mato Grosso, Instituto de Ciências Agrárias e Ambientas, Campus de Sinop, MT, Brasil

² UFRPE - Univ Federal Rural do Pernambuco, Unidade Acadêmica de Garanhuns, PE, Brasil

³ UNESP - Univ Estadual Paulista, Faculdade de Ciências Agronômicas, Departamento de Engenharia Rural, Botucatu, SP, Brasil

Article history: Received 19 May 2016; Received in revised form 20June 2016; Accepted 23 June 2016; Available online 30 July 2016.

ABSTRACT

The aim of this study was to evaluate the errors generated on the reference evapotranspiration (ET_0) estimation by Penman-Monteith FAO 56 (PMF 56) when employed simplified models to estimate the global radiation (H_G) are based on the air temperature. We evaluated 28 automatic weather stations (EMA's) belonging to the National Institute of Meteorology (INMET) network, in different biomes of Mato Grosso state. Was evaluated fifteen simplified models of H_G estimate calibrated regionally and five models without calibration. It was used as a reference ETo obtained by PMF 56, with H_G measure. The statistical performance were employed mean bias error (MBE), root mean square error (RMSE), adjustmentindex (d) and the cumulative numerical order of the different models in each index. The regional calibration models H_G estimation models improve the estimates of ETo. Can be used Bristow and Campbell (1984) and Goodin et al. (1999), De Jong and Stewart (1993) models to H_G estimates and then ET₀ to Amazon, Cerrado and Pantanal, respectively.

Keywords: Minimum data, solar radiation, air temperature, statistical indicative

EVAPOTRANSPIRAÇÃO DE REFERÊNCIA POR PENMAN-MONTEITH FAO 56 COM AUSÊNCIA DE DADOS DE RADIAÇÃO GLOBAL

RESUMO

Objetivou-se avaliar os erros gerados na estimativa da evapotranspiração de referência (ET_0) pelo método de Penman-Monteith FAO 56 (PMF 56) quando são empregados modelos simplificados de estimativa da radiação global (H_G) baseados na temperatura do ar. Foram avaliadas 28 estações meteorológicas automáticas (EMA's) pertencentes a rede do Instituto Nacional de Meteorologia (INMET), nos diferentes biomas do Estado de Mato Grosso. Foram avaliados quinze modelos simplificados de estimativa de H_G calibrados regionalmente e cinco modelos sem calibração. Empregou-se como referência a ETo obtida por PMF 56, com H_G medida. Na avaliação do desempenho estatístico foram empregados os indicativos estatísticos de erro relativo médio (MBE), raiz quadrática do erro médio (RMSE), índice de ajustamento

^{*}pachecoufmt@gmail.com

(d) e o ordenamento numérico acumulado dos diferentes modelos em cada índice. A calibração regional de modelos de modelos de estimativa de H_G melhoram as estimativas da ETo. Podem ser empregados os modelos de Bristow e Campbell (1984), Goodin et al. (1999) e De Jong e Stewart (1993) para estimativas de H_G e posteriormente de ETo, para Amazônia, Cerrado e Pantanal, respectivamente.

Palavras-Chave: Dados mínimos, radiação solar, temperatura do ar, indicativos estatísticos

INTRODUCTION

Solar radiation can be considered as the primary source of renewable and natural energy to the environment, which are important in many physical, chemical, biological and biophysical processes that occur on Earth's surface, with applications in areas such as agronomy, ecology, solar systems, environment, energy oceanography, architecture, among others (DAUT et al., 2011; CARVALHO et al., 2011; SOUZA & ESCOBEDO, 2013). Specifically in agricultural systems, solar radiation is essential in photosynthetic processes and the availability of energy for heating air and / or ground, as well as changes of water physical state by evaporation, transpiration and / or evaporation, which together define the water culture needs.

According to Carvalho et al. (2015) the evapotranspiration (ET) is the most active variable of the hydrological cycle and the main component of the water balance in agricultural ecosystems. Therefore, it is an important parameter for the planning and management of water resources (RAZIEI&PEREIRA, 2013; FALAMARZI et al., 2014; MANCOSU et al., 2014).

In general, the conceptual developments of potential evapotranspiration refers to the maximum loss of water from a vegetated surface, low size, in full development and without water deficit, in order to reduce the effect of local advective this energy. In context. evapotranspiration be directly can proportional to the availability of solar energy and radiation balance (CHANG, 1968; PEREIRA et al., 1997; ALLEN et al., 1998; ALLEN et al., 2011).

Direct measurements and/or estimates of solar radiation, specifically global radiation (H_G) are important in many evapotranspiration estimation models, therefore, reliability in recording and/or data estimates predict accurately models for hydroagricultural purpose (EL SEBAII & TRABEA, 2003). The lack of H_G measures a generalized manner, it can be considered as a major research limiting and applications for growth simulation models, development and crops vield (HOOK & MCCLENDON, 1992).

According to Souza & Escobedo (2013) routine monitoring of solar radiation was, during a long time, difficult and expensive, because of the high costs limit the acquisition of pyranometers, restricting its use to research centers. And yet, in Brazil, as in many countries, there are several problems in recording weather establishment information for of monitoring networks. Specifically HG, many stations have no pyranometers and/or data acquisition systems, thus making in inconsistent databases with a large number faults and/or long periods of of measurements absence (data loss failures equipment. calibration errors, water accumulation and dirt on the sensor, etc.), which in turn, do not allow seasonality assessments of solar radiation components and/or atmospheric attenuation (WU et al., 2007; ABRAHA & SAVAGE, 2008; ALMOROX et al., 2011).

Therefore, many statistical and/or H_G estimated parametric models were developed based on meteorological parameters (with higher routine measures and/or database), geographic, atmospheric and astronomical. Stand out models based

variables on such as sunshine air temperature (ANGSTROM, 1924), (HARGREAVES, 1981; BRISTOW & CAMPBELL, 1984; HUNT al.. et 1998;LIU & SCOTT, 2001; ABRAHA & SAVAGE, 2008), using data from nearby stations to the study local (HUNT et al., 1998; TRNKA et al., 2005; RIVINGTON al.. 2006), linear interpolation et (SOLTANI et al., 2004), interpolation of neural networks (ELIZONDO et al., 1994; REDDY & RANJAN, 2003), and satellitebased methods (PINKER et al., 1995), generation from time stochastic models (RICHARDSON & WRIGHT, 1984;HANSEN, 1999).

According to the International Commission on Irrigation and Drainage (ICID) and the United Nations of Food and Agriculture Organization (FAO), when evapotranspiration and solar radiation are not monitored, estimates can be employed by mathematical models. However, it is emphasized that the select method to be used depends on factors such as weather conditions, accessibility to necessary meteorological data, complexity of the method, grouping the considered data and costs (CARVALHO et al., 2007;ZANETTI et al., 2008). Thus, it is recommended that different estimation models are the evaluated and / or calibrated to the local climate.

The Penman-Monteith FAO 56 (PMF) is recognized as the standard methodology for estimating reference evapotranspiration by combining energy and aerodynamic components (SMITH,

MATERIAL AND METHODS

The meteorological data collected by 28 automatic weather stations (EMA's) installed in the Mato Grosso state (Table 1) were obtained from the National Institute of Meteorology (INMET). The EMA's network in Mato Grosso consists of 35 stations; however some had flaws and lack of data, characterized by equipment failure and/or calibration, maintenance periods or disabled, being disregarded in this study. 1991; ALLEN et al., 1998). However, this method requires a greater number of input variables such as solar radiation, air temperature, relative humidity and wind speed. Knowing the difficulty of using the standard method PMF 56 in many regions due to lack of climate data, suggested for estimating procedures missing variables such as vapor pressure deficit and wind speed (CARVALHO et al., 2015) and solar radiation (GAVILÁN et al., 2007; YIN et al., 2008; SENTELHAS et al., 2010). Such procedures have required the assessment in different weather conditions to test their viability (DORNELAS et al., 2006; CUNHA et al., 2008; CARVALHO et al., 2011; TODOROVIC et al., 2013; ALENCAR et al., 2015).

The evaluated equations are based on air temperature, air humidity and precipitation, these variables are monitored in all EMAs above, and these data are available on climate normal on conventional weather stations (EMC's) from INMET network in the Mato Grosso state (12 stations distributed in different regions). Therefore, this assessment allows applications to obtain the global radiation and evapotranspiration in the historical series of EMC's more reliably. Given the above, and the importance of solar radiation in obtaining evapotranspiration, this work aimed to evaluate the estimate of global radiation influence in obtaining the daily reference evapotranspiration bv Penman - Monteith FAO 56, for Mato Grosso State.

The data period refers to operational time of this weather station.

The Mato Grosso state is located in the Midwest region of Brazil, between the coordinates 06 $^{\circ}$ 00' S and 19 $^{\circ}$ 45' S and 50 $^{\circ}$ 06' W and 62 $^{\circ}$ 45'W, totaling area of 903,357,908 km² (Figure 1). In general, Mato Grosso state has two seasons well defined: rainy season (October to April) and dry (May to September). The average annual temperatures ranged between 23.00 and 26.84 $^{\circ}$ C and the total annual rainfall vary from 1200 to 2000 mm, with higher levels in the North and East, Northern State and the areas with altitudes close to

800m. The Köppen climate classification, occur climate types Aw (Climate Tropical Savannah) and Cwa (altitude tropical climate) (SOUZA et al., 2013).

Region	Code	Station name	Latituda	Longitude	Altitude	Data Pariod	Number	Effective	Losses
Region	Coue	Station name	Latitude	Longitude	(m)	Data Terrod	of data	data	(%)
	A-924	1. Alta Floresta	-10.0672	-56.7522	294	09/2011-01/2013	519	422	18.69
	A-910	2. Apiacás	-9.5639	-57.3936	220	10/2006-01/2013	2315	1364	41.08
	A-926	3. Carlinda	-9.9703	-55.8272	300	04/2008-01/2013	1768	1517	14.2
	A-906	 Guarantã do Norte 	-9.9500	-54.8833	320	05/2007-01/2013	2102	1338	36.35
	A-919	5. Cotriguaçu	-9.9061	-58.5719	261	01/2008-01/2013	1858	1564	15.82
Amazon	A-914	6. Juara	-11.2803	-57.5267	260	11/2006-02/2012	1947	1265	35.03
Anazon	A-920	7. Juína	-11.3750	-58.775	374	10/2007-01/2013	1949	1259	35.4
anu	A-928	8. Nova Maringá	-13.0386	-57.0922	353	04/2008-01/2013	1768	975	44.85
transitions	A-917	9. Sinop	-11.9822	-55.5658	371	11/2006-06/2012	2284	930	59.28
	A-904	10. Sorriso	-12.5452	-55.7113	380	01/2009-01/2013	1493	958	35.83
	A-917	11. Pontes de Lacerda	-15.2511	-59.3467	256	01/2008-01/2013	1858	1301	29.98
	A-935	12. Porto Estrela	-15.3247	-57.2264	145	02/2008-01/2013	1827	767	58.02
	A-936	13. Salto do Céu	-15.1247	-58.1275	303	01/2008-01/2013	1858	1462	21.31
	A-922	14. Vila Bela S. Trindade	-15.0628	-59.8729	222	01/2008-01/2013	1858	1404	24.43
	A-929	15. Nova Ubiratã	-13.4111	-54.7522	518	04/2008-01/2013	1768	1168	33.94
	A-912	16. Campo Verde	-15.3139	-55.0808	749	01/2008-01/2013	1858	898	51.67
	A-907	17. Rondonópolis	-16.4500	-54.5666	284	01/2008-01/2013	1858	1377	25.89
	A-932	18. Guiratinga	-16.3417	-53.7661	526	01/2008-01/2013	1858	1201	35.36
	A-933	19. Itiquira	-17.1750	-54.5014	585	08/2008-01/2013	1646	981	40.4
Cerrado	A-913	20. Comodoro	-13.4231	-59.4546	591	01/2008-01/2013	1858	1511	18.68
and	A-927	21. Novo Mundo	-12.5219	-58.2314	431	03/2008-01/2013	1798	1373	23.64
transitions	A-905	22. Campo Novo Parecis	-13.7833	-57.8333	570	06/2010-01/2013	976	505	48.26
	A-931	23. Santo Ant. do Leste	-14.9278	-53.8836	648	08/2008-01/2013	1646	1238	24.79
	A-930	24. Gaúcha do Norte	-13.1847	-53.2575	379	08/2008-01/2013	1646	1376	16.4
	A-908	25. Água Boa	-14.0161	-52.2122	432	01/2008-01/2013	1858	1631	12.22
	A-918	26. Confresa	-10.6539	-51.5668	237	06/2008-01/2013	1707	1278	25.13
	A-921	27. S. Felix do Araguaia	-11.6189	-50.7278	218	08/2011-01/2013	550	456	17.09
Pantanal	A-901	28. Cuiabá	-15.5594	-56.0628	240	05/2011-01/2013	642	463	27.88

Table 1. Automatic Weather Stations of INMET network evaluated in Mato Grosso State

Figure 1. Automatic Weather Station Location (evaluated EMA's and biomes of Mato Grosso state. (Numerical identification according to Table 1)

The incident radiation on the atmosphere top (H_0) was obtained as a function of latitude and time of year, according to Iqbal (1983). The evaluated estimation models of solar radiation and their source are shown in Table 2. For

estimating the solar radiation were used equations with calibrated coefficients for each regional station (Models 1 to 15), whereas the models 16 to 20 have been used the coefficients proposed by the each model authors.

Table 2. Estimating	equation	of solar	radiation,	parameters ar	nd references
U	1			1	

Estimating model	Equation	Parameters	Reference
1 - ABS	$H_G=0.75 \left(1-\exp\left(-b\frac{\Delta T^2}{\Delta T med}\right)\right)H_0$	b	Abraha and Savage (2008)
2 - ASW	$H_{G}=0.75 [1 - \exp(-b f(T_{med})\Delta T^{2} f(T_{min}))] H_{0}$ f(T _{med})=0.017 exp[exp(-0.053 T _{médio})] f(T _{min})= exp($\frac{T_{min}}{tnc}$)	b, tnc	Abraha and Savage (2008); Weiss et al. (2001)
3 - ALM	$H_{G} = a\Delta T^{b} \left[1 - exp \left(-c \left(\frac{e_{smin}}{e_{smax}} \right)^{d} \right) \right] H_{0}$	a, b, c, d	Almorox et al. (2011)
4 - ANN	$H_{G} = a(1+2.7.10^{-5} \text{Alt}) \sqrt{\Delta T} H_{0}$	а	Annandele et al .(2002)
5 - BRC	$H_G = a[1 - exp(-b\Delta T^c)]H_0$	a, b, c	Bristow and Campbell (1984)
6 - CHE	$H_{G} = (a\sqrt{\Delta T} + b)H_{0}$	a, b	Chen et al (2004)
7 - DJS	$H_{G} = a\Delta T^{b} (1 + cP + dP^{2})H_{0}$	a, b, c, d	De Jong and Stewart (1993)
8 - DOC	$H_{G} = a(1 - exp\left(-b\frac{\Delta T^{c}}{\Delta Tmed}\right))H_{0}$	a, b, c	Donatelli and Campbell (1998)
9 - GOO	$H_{G} = a(1 - exp\left(-b\frac{\Delta T^{c}}{H_{0}}\right))H_{0}$	a, b, c	Goodin et al (1999)
10 - HAR	$H_{G} = a(T_{max} - T_{min})^{0.5} H_{0}$	а	Hargreaves (1981)
11 - HU1	$H_G = a\sqrt{\Delta T} H_0 + b$	a, b	Hunt et al (1998)
12 – HU2	$H_G = a\sqrt{\Delta T}H_0 + bT_{max} + cP + dP^2 + e$	a, b, c, d, e	Hunt et al (1998)
13 - MAH	$H_G = a \Delta T^{0.69} H_0^{0.91}$	а	Mahmood and Hubbard (2002)
14 - MEV	$H_{G}=0.75(1-\exp(-b\Delta T^{2}))H_{0}$	b	Meza and Varas (2000)
15 - THR	$H_G = H_0 [1 - 0.9 \exp(-b\Delta T^{1.5})]$	b	Thorton and Running (1999)
16 – KR1	$H_G = a(T_{max} - T_{min})^{0.5} H_0$	a, kr1=0,16	Hargreaves and Samani (1982)
17 – KR2	$H_{G} = a(T_{max} - T_{min})^{0.5} H_{0}$ $a = a_{i} \left(\frac{P_{atm}}{P_{o}}\right)^{0.5}$	a kr2=0,17	Hargreaves and Samani (1982) Allen (1995)
18 – KR3	$H_{G}=a(T_{max}-T_{min})^{0.5}H_{0}$ a=0.00185($T_{max}-T_{min}$) ² -0.0433($T_{max}-T_{min}$)+0.4023	a kr3	Hargreaves and Samani (1982) Samani (2000)
19 - BCA	$H_G = a [exp(-b \Delta T^c)]H_0$ b=0.036 exp(-0.154 $\overline{\Delta T}$)	a, b, c a=0,7; c=2,4	Bristow and Campbell (1984)
20 - WEI	$H_{G}=0.75 \left(1-\exp\left(-b\frac{\Delta T^{2}}{H_{o}}\right)\right)H_{0}$	b	Weiss et al. (2001)

 $^{^{*}\}Delta T$ – daily temperature range, obtained by the difference in Tmax and Tmin ; $\overline{\Delta T}$ – averagethermal range; T_{med} – average air temperature; T_{min} –minimum air temperature; T_{max} – maximum temperature; es_{min} – minimum vapor pressure saturation, using T_{min} ; es_{max} – maximum saturation pressure, using T_{max} ; Alt – local altitude; P – precipitation; tnc – temperature factor of summer night; P_{atm} – local atmospheric pressure (kPa); P_0 – average atmospheric pressure on sea level (101.33 kPa); the saturation pressure e_s

Was evaluated the influence of estimated H_G in obtaining daily evapotranspiration (ET₀) by Penman-

Monteith FAO method (Allen et al., 1998) (eq. 21), with standard measured Hg. This assessment was based on the influence that the net radiation (Rn) presents on ETo estimation, and also that Rn estimate can be simplified by the radiation balance on shortwave (ROC) and longwave (ROL). Therefore, ROC can be defined as the difference between the incident radiation (H_G) and reflected radiation (albedo lawns parameterized 23%) (ALLEN et al., 1998).

$$ET_{0} = \frac{0.408 \Delta (H - G) + \gamma \frac{900}{T + 278} U_{2} (es - ea)}{\Delta + \gamma (1 + 0.34 U_{2})}$$

Where: ET₀–reference evapotranspiration (mm day⁻¹);Rn–radiation balance(MJ m² d⁻ ¹); G –heat flow in soil, (MJ $m^2 d^{-1}$) (adopted G = 0.03 Rn); T –daily average air temperature at 2 m height (°C); u₂ wind speed at 2 m height (m s⁻¹); e_s -vapor saturation pressure (kPa); e_a-current vapor pressure(kPa); Δ -curve inclination of vapor pressure versus temperature (kPa °C⁻¹); γ psychrometric constant (kPa °C⁻¹); 0,408 stands for $\frac{1}{4}$, λ the vaporization latent heat of water equal 2.45 MJ Kg⁻¹, 900 is a coefficient to unit conversion. These variables were estimated according to the recommendations of Pereira et al. (1997) and Allen et al. (1998). The daily values of the radiation balance in long-wave (ROL) was given in equation 22.

$$ROL = -\left(0.9\frac{n}{N} + 0.1\right)\left(0.56 - 0.25\sqrt{e_a}\right)\sigma\left[\left(T_{kn}^4 + T_{kn}^4\right)/2\right]$$

where: σ - Stefan-Boltzmann constant (4.903 10⁻⁹ MJ m⁻² K⁻⁴ day⁻¹); T_{kx}-daily maximum temperature (K); T_{kn}-daily minimum temperature (K).

RESULTS AND DISCUSSION

The annual variation in ETo values estimated by the PMF 56 method for meteorological stations located at different latitudes and biomes of the Mato Grosso state, presented behavior similar of global radiation seasonality throughout the year, with higher values in summer and lower in winter (Figure 2). This behavior was In performance assessing the equations of daily estimates on inclined surfaces as the horizontal were employed statistical indicative: determination coefficient (R²), percentage relative error, MBE (Mean Bias Error), RMSE (Root Mean Square Error) and adjustment index "d" Willmott, as recommended by Souza & Escobedo (2013) and Badescu (2013).

$$MBE = \frac{\sum_{i=1}^{N} (P_{i} - O_{i})}{N - 1}$$
$$RMSE = \left[\frac{\sum_{i=1}^{N} (P_{i} - O_{i})^{2}}{N}\right]^{0.5}$$
$$d = \left[\frac{\sum_{i=1}^{N} (P_{i} - O_{i})^{2}}{\sum (|Pi - O| + |Oi - O|)^{2}}\right]$$

where: Pi –estimated values by simplified models (mm day⁻¹); Oi –estimated values by PMF (mm day⁻¹); O –average estimated values by PMF (mm day⁻¹); N –number of values.

It used weighted values (Vp) of statistical indications to classify the best method for estimating ETo. To obtain the Vp value assigned to weights from 1 to "n" for each statistical indicator, "n" being the number of models tested, in which case, given the weight 1 to the best model and the weight "n" to worse, and consequently, the best model is the one with the lowest sum of the assigned weights ie lower amount of accumulated Vp (TANAKA et al., 2016).

influenced by the temporal variation in average air temperature, which was similar for all locations under study, with the highest average temperatures occurring from September to April (rainy season) and the lowest between the months of May and August (dry season).

Figure 2. Seasonality of global radiation and reference evapotranspiration for the Água Boa station (A908) belonging to INMET network, from 01/2008 to 01/2013

According to Carvalho et al. (2015), if there is no water restriction, evapotranspiration is proportional to the availability of solar energy and radiation balance, setting thus the scenarios to evaluate the influence of H_G estimates in ETo (CARVALHO et al., 2011; SOUZA et al., 2011).

The average daily ET_0 for the Amazon biome, the Cerrado and Pantanal (considering its transitions) were 3.57; 3.76 mm and 3.31 day⁻¹, respectively. These results corroborate with Souza et al. (2013), which analyzed 13 normal climate in the Mato Grosso state, found average daily ET_0 of 4.41 and 4.73 mm for Cáceres and Cuiabá (Pantanal), 3.59 and 3.64 for Matupá and Vera (Amazon) and 3.85 and 3.90 mm for Rondonópolis and Canarana (Cerrado).

The seasonality is dependent on the solar radiation and the amount of water vapor in the local atmosphere which, in turn, is related to cloud cover and directly affect the radiation balance; therefore, the estimates for the same model range from humid regions, semi humid or arid. According to Souza et al. (2011), this behavior can be observed for daily averages of ET_0 obtained by H_G evaluated models estimation (Table 3).

For models not regionally calibrated (KR1, KR2, KR3, BCA and WEI) were observed average values of ET_0 higher than those obtained with measured H_G , independently of evaluated station.

Marti et al. (2010) and Carvalho et al. (2015) find it convenient to use the relative error (ER) to infer onperformance quality of ET_0 estimates different models, however, indicate that model as satisfactory ER $\leq 20\%$ and its cumulative frequency distributions. Relative error showed analysis that occurs errors probability up to 20% ranged from 25.2 to 34.7% for H_G with ET_0 estimates obtained by GOO calibrated models and ABS, respectively (Table 4). For uncalibrated models, the probability of ER maximum of 20% ranged from 39 to 64.5%. In general, there was a 50% probability of occurrence ER between 10 and 14% for H_G calibrated estimation models.

According to Souza et al. (2011), the statistical indicative MBE, RMSE and d Willmott adjustment index used together is a proper assessment of the statistical performance estimation models with simultaneous analysis of deviations from the mean, to identify the occurrence of under or overestimation and as for the model scattering and the adjustment in relation to the measured values. The indicative MBE is the deviation from the medium and provides information on the model of long-term performance; negative values indicate an underestimation and positive values overestimation. As smaller MBE absolute value, better the performance of the tested model, however, overestimation cancels an an underestimation.

In this sense, the locally calibrated models showed lower MBE amplitudes when compared with non-calibrated models (with the exception of ABS and CHE) (Figure 3). To 27 and 28 EMA's (São Félix do Araguaia and Cuiabá), all calibrated models showed trends to underestimate ET_0 (up to -0.19 mm day⁻¹).

Figure 3. MBE values to ET₀ estimated by PMF 56 method with different H_G estimating models use, to 28 EMA's in Mato Grosso State, Brazil

The WEI model allowed underestimation of ET_0 regardless of evaluated EMA. Among the locally calibrated models, the major sub and overestimation occurred for ABS (-0.19 and 1.16 mm on day⁻¹ on Cuiabá and

Comodoro EMA's respectively). These results indicate the importance of simplified models regional calibration to estimates from other meteorological variables for use in the PMF 56 model. According to Carvalho et al. (2015) the use of simplified measures and parameterization variables like vapor pressure (ea) and solar radiation (H_G) can provide low deviations of mean values of ET_0 by PMF 56 for tropical regions.

As for scattering, the calibrated models presented the RMSE ranging from 0.11 to 1.58 mm day⁻¹ (Figure 4), whereas uncalibrated models presented dispersion from 0.10 to 1.70 mm day⁻¹. The ANN, HAR and HU1 models behaved similarly as the scattering, with differences of 1.70

dav⁻¹ between maximum mm and minimum values of RMSE (0.53 to 0.76 mm day^{-1}). This statistical indicator informs about the actual value of the error produced by the model and indicates the values range for the dependent variable (ET₀ PMF with H_G measure) considering a given value of the independent variable $(ET_0 PMF with estimated H_G)$. As lower the RMSE obtained values, better is the models performance.

Figure 4. RMSE values to ET₀ estimated by PMF 56 method with different H_G estimating models use, to 28 EMA's in Mato Grosso State, Brazil

Brazilian Journal of Biosystems Engineering v. 10(2): 217-233, 2016

Table 3. Daily average of reference evapotranspiration (mm day ⁻¹) by Penman-Monteith FAO 56 model with different global radiation estimate
methods, to different automatic weather stations in Mato Grosso state.

Region	Station	Measured H _G	ABS	ASW	ALM	ANN	BRC	CHE	DJS	DOC	GOO	HAR	HU1	HU2	MAH	MEV	THR	KR1	KR2	KR3	BCA	WEI
	1. Alta Floresta	3.96	4.04	4.03	4.04	4.01	4.04	3.97	3.98	4.01	4.02	4.01	4.00	3.99	3.98	4.05	3.98	3.99	4.12	4.12	4.43	3.04
	2. Apiacás	3.44	3.70	3.62	3.69	3.56	3.59	3.59	3.62	3.55	3.55	3.56	3.56	3.56	3.58	3.68	3.61	3.71	3.89	4.09	4.10	2.81
	3. Carlinda	3.68	3.73	3.72	3.71	3.69	3.71	3.81	3.65	3.68	3.70	3.69	3.71	3.73	3.66	3.74	3.66	3.59	3.75	3.76	4.07	2.56
	4. Guarantã do Norte	3.31	3.51	3.35	3.40	3.27	3.38	3.56	3.46	3.50	3.68	3.27	3.27	3.35	3.27	3.35	3.23	3.96	4.14	4.07	4.43	2.96
	5. Cotriguaçu	3.26	3.29	3.29	3.32	3.28	3.30	3.29	3.32	3.28	3.29	3.28	3.25	3.28	3.23	3.29	3.22	3.63	3.81	3.76	4.14	2.54
Amazon	6. Juara	3.61	3.68	3.62	3.66	3.63	3.65	3.64	3.74	3.66	3.66	3.63	3.63	3.68	3.54	3.67	3.52	3.92	4.10	4.09	4.44	2.75
and	7. Juína	3.45	3.54	3.47	3.50	3.45	3.49	3.48	3.46	3.49	3.49	3.45	3.47	3.47	3.41	3.53	3.45	3.67	3.83	3.80	4.19	2.56
transitions	8. Nova Maringá	3.77	3.89	3.88	3.79	3.53	3.80	3.55	3.63	3.76	3.76	3.53	3.53	3.63	3.58	3.89	3.62	4.11	4.28	4.13	4.54	3.29
	9. Sinop	3.56	3.93	4.06	3.99	3.78	4.34	4.15	4.42	4.31	4.10	3.80	3.92	3.99	3.59	3.91	3.61	3.35	3.49	3.47	3.80	2.51
	10. Sorriso	3.67	3.72	3.76	3.76	3.69	3.75	3.83	3.78	3.71	3.71	3.69	3.71	3.81	3.70	3.72	3.69	3.90	4.05	4.00	4.38	2.94
	11. Pontes de Lacerda	3.72	3.70	3.75	3.77	3.72	3.76	3.83	3.68	3.70	3.70	3.72	3.71	3.78	3.68	3.70	3.68	3.89	4.07	3.97	4.36	2.88
	12. Porto Estrela	3.63	3.60	3.30	3.72	3.41	3.67	3.55	3.56	3.63	3.63	3.41	3.45	3.51	3.24	3.59	3.05	3.80	4.00	3.90	4.26	2.83
	13. Salto do Céu	3.42	3.35	3.41	3.45	3.42	3.45	3.50	3.44	3.40	3.42	3.42	3.41	3.50	3.35	3.35	3.31	3.80	3.96	3.90	4.27	2.78
	14. Vila Bela S. Trindade	3.50	3.57	3.61	3.62	3.52	3.61	3.53	3.55	3.55	3.56	3.52	3.60	3.67	3.50	3.57	3.51	3.66	3.86	3.73	4.11	2.75
	15. Nova Ubiratã	3.92	4.02	4.05	4.05	4.01	4.05	4.02	4.00	4.01	4.02	4.01	4.06	4.01	3.93	4.03	3.93	4.03	4.15	4.18	4.45	3.07
	16. Campo Verde	3.95	4.24	4.32	4.49	4.25	4.49	4.52	4.54	4.56	4.57	4.10	4.10	4.34	4.11	4.05	4.13	3.75	3.81	3.73	4.25	2.85
	17. Rondonópolis	3.71	3.70	3.46	3.85	3.56	3.61	3.71	3.68	3.75	3.77	3.56	3.68	3.80	3.36	3.70	3.31	4.07	4.25	4.16	4.52	3.10
	18. Guiratinga	3.21	3.17	3.16	3.18	3.16	3.16	3.18	3.12	3.21	3.22	3.16	3.16	3.12	3.08	3.18	3.05	3.86	3.99	3.94	4.32	2.96
	19. Itiquira	4.15	4.28	4.30	4.04	4.28	4.11	4.40	4.36	4.25	4.28	4.28	4.28	4.40	4.22	4.30	4.22	4.15	4.25	4.23	4.61	3.21
Cerrado	20. Comodoro	3.24	4.40	3.15	3.18	3.18	3.18	3.22	3.22	3.17	3.19	3.18	3.18	3.21	3.06	3.12	3.02	3.46	3.56	3.59	3.95	2.42
and	21. Novo Mundo	3.84	3.89	3.90	3.87	3.84	3.86	3.80	3.80	3.83	3.84	3.84	3.86	3.87	3.82	3.91	3.83	3.69	3.82	3.79	4.15	2.77
transitions	22. Campo Novo Parecis	3.68	3.70	3.67	3.74	3.70	3.73	3.75	3.79	3.77	3.79	3.69	3.72	3.72	3.62	3.61	3.57	4.10	4.22	4.26	4.50	3.28
	23. Santo Antonio do	4.08	4.20	4.24	4.23	4.16	4.22	4.20	4.22	4.17	4.17	4.16	4.22	4.22	4.11	4.21	4.13	4.04	4.12	4.15	4.49	3.07
	24.Gaúcha do Norte	3.69	3.80	3.85	3.84	3.75	3.84	3.76	3.92	3.78	3.81	3.75	3.75	3.93	3.71	3.82	3.71	3.86	4.02	3.99	4.33	2.81
	25. Água Boa	3.96	4.04	4.03	4.04	4.01	4.04	3.97	3.98	4.01	4.02	4.01	4.00	3.99	3.98	4.05	3.98	3.99	4.12	4.12	4.43	3.04
	26. Confresa	3.73	3.78	3.83	3.83	3.75	3.82	3.74	3.86	3.76	3.77	3.75	3.75	3.83	3.76	3.80	3.75	4.03	4.22	4.17	4.52	2.99
	27. S. Felix do Araguaia	3.75	3.71	3.56	3.69	3.62	3.69	3.70	3.63	3.68	3.71	3.62	3.63	3.63	3.55	3.68	3.54	3.82	3.98	3.97	4.30	2.68
Pantanal	28. Cuiabá	3.31	3.12	3.03	3.17	3.19	3.19	3.20	3.23	3.22	3.22	3.19	3.22	3.22	3.16	3.11	3.12	4.32	4.49	4.40	4.40	3.30

	Relative Error (%)													
H _G Estimating model	2	4	6	8	10	20	30	40	50	100				
ABS	91.7	83.8	75.9	68.5	61.5	34.7	19.0	10.9	6.2	0.6				
ASW	90.9	82.2	73.7	66.0	58.6	31.5	16.6	9.3	4.9	0.2				
ALM	89.8	80.2	70.7	61.9	53.9	25.7	12.9	7.0	3.7	0.1				
ANN	91.5	82.7	73.8	65.8	57.8	27.5	12.8	6.6	3.4	0.1				
BRC	89.5	79.5	70.0	61.1	53.4	25.4	13.4	7.6	4.4	0.4				
CHE	90.7	81.9	73.2	64.9	57.2	28.0	14.2	8.1	4.4	0.2				
DJS	90.5	81.4	72.5	64.4	56.5	27.0	13.5	7.5	4.3	0.4				
DOC	90.1	80.3	70.8	61.8	54.0	26.2	14.0	8.2	4.9	0.4				
GOO	89.4	79.2	69.4	60.6	52.2	25.2	13.2	7.5	4.4	0.2				
HAR	91.4	82.6	73.7	65.8	57.8	27.5	12.8	6.6	3.4	0.1				
HU1	91.3	82.3	73.5	65.2	57.7	27.2	13.0	7.0	3.7	0.1				
HU2	90.8	81.3	72.7	64.3	56.3	27.2	13.7	7.6	4.1	0.2				
MAH	90.7	81.9	73.3	65.0	57.3	26.4	11.0	4.9	2.3	0.1				
MEV	91.5	83.2	75.1	67.4	60.4	33.2	17.6	9.4	5.1	0.2				
THR	91.3	83.0	74.7	66.8	59.1	28.8	12.2	5.4	2.6	0.1				
KR1	91.4	82.6	74.4	66.5	59.1	31.9	18.0	10.7	6.0	0.2				
KR2	91.1	82.7	74.6	67.3	60.6	35.5	21.8	13.6	8.3	0.3				
KR3	93.8	87.1	80.4	74.1	67.8	41.4	25.7	18.4	13.9	2.2				
BCA	92.7	85.4	78.2	71.6	66.0	45.9	32.5	22.2	15.0	1.5				
WEI	95.7	91.4	87.0	82.9	78.9	61.0	43.5	26.0	12.1	0.1				

Table 4. Cumulative frequency of relative percentage error occurrence of ET₀ estimate with HG estimate by empirical models to PMF 56 method in Mato Grosso state.

The scattering obtained in this study corroborate with others that aimed to seek simplification in obtaining H_G as input variable to PMF 56 model. Todorovic et al. evaluated 577 (2013)stations in 16 Mediterranean countries and suggested empirical coefficients local corrections of H_G estimating equations and obtained scattering around 0.59 - 0.65; 0.47 - 0.82; 0.41 - 0.47; and 0.36 - 0.55 mm day⁻¹ for arid, semi-arid, sub-humid and humid, respectively. Raziei & Pereira (2013) evaluated 40 EMC's in Iran and observed changes in RMSE between 0.27 and 2.86; and from 0.18 to 52 mm day⁻¹ in arid and humid regions, respectively. Sentelhas et al. (2010) obtained for stations in Canada RMSE values of 0.79 to 1.12 mm day⁻¹ with H_G estimated models by maximum and minimum temperatures of the air. Already

Carvalho et al. (2015) evaluated 46 EMC's in the Brazilian Southeast obtained RMSE range of 0.05 to 0.85 mm day⁻¹, with higher values for stations up - country. Specifically for Minas Gerais state, Alencar et al. (2015) found for 20 EMC's analyzed scatterings ranging from 0.49 to 0.83 mm day⁻¹ when ET_0 was estimated by PMF 56 with the H_G data absence.

The adjustment index d of Willmott is dimensionless (ranging from 0 to 1) and shows how the estimated values (dependent variable) fit to the measured values (independent variable), or indicates the removal of estimated data of the observed mean (CARVALHO et al., 2015). The minor adjustments were obtained by the models KR3 and WEI (Figure 5).

Figure 5. Adjustment index values (d) to ET_0 estimating by PMF 56 method with different H_G estimating models use, to 28 EMA's in Mato Grosso State, Brazil.

For the calibrated model, "d" values ranging from 0.56 to 0.94, being smaller than the difference between maximum and minimum were 0.75 to 0.92 (17% variation in adjustment) for HAR and ANN models. The worst adjustments were observed in EMA's A906 (Guarantã do Norte), A917 (Sinop) and A928 (Nova Maringá), both in the State of the Amazon region, resulting from the high percentage of data losses (Table 1).

In Table 5 are the cumulative values (Vp) for statistical indicative considered in performance evaluation estimate of ET_0 with different obtaining HG models. The GOO,

BRC, MAH, DOC, HU1 and DJS models were framed with smaller total of Vp to 28.6; 21.4; 21.4; 14.3; 10.7 and 3.6% of EMA's, respectively. The best estimates of ET_0 to the Amazon and Cerrado regions, with their transitions were found when applied BRC and GOO models, respectively. The uncalibrated models showed the highest accumulated Vp values indicating the worst statistical indicative regardless of the season, and demonstrating that the local calibration of solar radiation estimation models is essential obtaining for good evapotranspiration estimates.

Region	Station	ABS	ASW	ALM	ANN	BRC	CHE	DJS	DOC	GOO	HAR	HU1	HU2	MAH	MEV	THR	KR1	KR2	KR3	BCA	WEI	Best
	1. Alta Floresta	41	38	20	27	28	20	15	14	22	37	17	36	20	34	17	45	52	53	58	59	DOC
	2. Apiacás	41	30	29	19	11	23	31	8	3	19	21	21	33	34	41	42	48	59	56	56	GOO
	3. Carlinda	39	28	25	24	24	43	18	15	7	23	30	26	25	37	28	46	41	55	55	59	GOO
Amazon and	4. Guarantã do Norte	37	25	16	19	12	38	34	32	40	19	18	17	8	27	24	51	55	57	59	50	MAH
	5. Cotriguaçu	32	28	21	23	16	25	32	14	15	23	25	31	19	31	30	48	52	55	59	56	DOC
	6. Juara	44	21	14	25	9	18	39	19	23	16	13	25	34	41	39	41	49	54	56	60	BRC
	7. Juína	39	23	15	23	11	23	26	16	16	22	23	26	32	37	33	43	50	55	56	59	BRC
	8. Nova Maringá	38	30	9	30	8	25	19	4	5	33	32	20	34	38	34	37	49	53	56	57	DOC
transitions	9. Sinop	36	46	26	20	38	48	58	52	41	19	19	30	5	30	12	14	6	30	27	59	MAH
	10. Sorriso	40	32	30	14	21	34	39	17	9	17	26	29	19	38	24	41	50	54	56	60	GOO
	11. Pontes de Lacerda	29	26	18	25	14	35	19	22	22	20	25	34	22	29	28	44	52	54	56	60	BRC
	12. Porto Estrela	31	37	13	28	8	27	16	7	5	30	38	37	46	26	55	20	39	51	51	60	GOO
	13. Salto do Céu	34	23	14	23	10	35	14	21	7	24	27	38	23	32	28	48	52	55	59	56	GOO
	14. Vila B. S. Trindade	40	29	19	28	16	18	24	23	19	24	33	38	10	27	13	43	51	53	55	59	MAH
	Total	521	416	269	328	226	412	384	264	234	326	347	408	330	461	406	563	646	738	759	810	BRC
	15. Nova Ubiratã	34	36	20	25	34	34	27	17	11	19	44	15	10	38	20	32	48	56	55	60	MAH
	16. Campo Verde	32	37	36	29	39	48	51	54	57	10	6	32	13	13	17	17	9	30	33	60	HU1
	17. Rondonópolis	23	35	18	29	11	25	22	14	14	24	32	29	39	19	45	37	51	53	60	57	BRC
	18. Guiratinga	35	30	12	21	18	25	27	7	10	19	27	32	39	32	39	49	54	56	60	51	DOC
	19. Itiquira	37	34	12	31	5	46	33	23	20	36	32	52	11	35	11	17	26	42	56	60	BRC
Cerrado	20. Comodoro	60	27	15	27	12	18	4	30	12	28	32	24	31	33	35	36	47	53	53	56	DJS
and	21. Novo Mundo	42	37	23	22	15	42	23	15	6	25	26	28	26	44	27	43	36	53	48	60	GOO
transitions	22. Campo Novo Parecis	39	27	23	16	11	18	22	20	15	18	18	22	30	43	42	41	47	57	56	55	BRC
transitions	23. S. Antonio do Leste	34	36	24	30	21	32	37	23	14	25	44	42	10	35	19	19	17	45	55	60	MAH
	24. Gaúcha do Norte	30	33	26	23	22	25	38	24	28	22	23	46	13	33	14	42	50	55	56	59	MAH
	25. Água Boa	41	22	17	25	17	13	7	21	14	36	30	15	16	44	18	27	50	55	54	59	DJS
	26. Confresa	32	32	19	24	17	17	35	14	13	23	28	26	27	34	21	45	52	55	58	57	GOO
	27. S. Felix do Araguaia	25	36	15	33	16	25	24	20	4	36	31	37	37	27	37	22	43	56	55	59	GOO
	Total	464	422	260	335	238	368	350	282	218	321	373	400	302	430	345	427	530	666	699	753	GOO
Pantanal	28. Cuiabá	43	43	24	22	14	17	9	23	20	17	10	12	29	42	36	51	56	55	60	33	DJS
	Total	1028	881	553	685	478	797	743	569	472	664	730	820	661	933	787	1041	1232	1459	1518	1596	GOO; BRC

Table 5. Classification of global solar radiation estimating models on reference evapotranspiration estimate according to performance indicators ordering MBE, RMSE and d.

CONCLUSIONS

The local calibration of simplified models coefficients to estimate the solar radiation has positively influence on daily estimate of reference evapotranspiration.

In the absence of solar radiation data, reference evapotranspiration estimates by Penman-Monteith FAO 56 to the Amazon,

REFERENCES

ABRAHA, M. G.; SAVAGE, M. J. Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations. **Agricultural and Forest Meteorology** 148: 401-416, 2008.

ALENCAR, L. P.; SEDIYAMA, G. C.; MANTOVANI, E. C.Estimativa da evapotranspiração de referência (ETo padrão FAO), para Minas Gerais, na ausência de alguns dados climáticos. **Engenharia Agrícola** 35(1): 39-50, 2015.

ALLEN, R.G., PEREIRA, L.S., HOWELL, T.A., JENSEN, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management v.98, p.899–920, 2011.

ALLEN, R. G.; PEREIRA, L. S.; RAES, D. **Crop evapotranspiration**. Rome: FAO, 297p (FAO Irrigation and Drainage Paper, 56). 1998.

ALLEN, R. G. **Evaluation of procedures for estimating mean monthly solar radiation from air temperature**. Rep. United Nations Food and Agriculture Organization (FAO). Rome, Italy. 1995.

ALMOROX, J.; HONTORIA, C.; BENITO, M. Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain). **Applied Energy** 88: 1703-1709, 2011.

ANNANDALE, J.G.; JOVANIC, N. Z.; BENADE, N.; ALLEN, R. G. Software for missing data error analysis of Penman-Monteith reference evapotranspiration. **Irrigation Science** 21: 57-67, 2002. the Cerrado and Pantanal region in Mato Grosso State should consider Bristow and Campbell (1984), Goodin et al. (1999) and De Jong and Stewart (1993) methods, with regional calibration of parametric coefficients for each model.

ANGSTROM, A. Solar and terrestrial radiation. **Quarterly Journal of the Royal Meteorological Society** 50(4): 121-126, 1924.

BADESCU, V. Assessing the performance of solar radiation computing models and model selection procedures. Journal of Atmospheric and Solar-Terrestrial Physics 105-106: 119-134, 2013.

BRISTOW, K.L.; CAMPBELL, G.S. On the relationship between incoming solar radiation and daily minimum and maximum temperature. **Agricultural and Forest Meteorology** 31: 159-166, 1984.

CARVALHO, D. F.; ROCHA, H. S.; BONOMO, R.; SOUZA, A. P. Estimativa da evapotranspiração de referência a partir de dados meteorológicos limitados. **Pesquisa Agropecuária Brasileira** 50(1): 1-11, 2015.

CARVALHO, D. F.; SILVA, D. G.; SOUZA, A. P.; GOMES, D. P.; ROCHA, H. S. Coeficientes da equação de Angstrom-Prescott e sua influência na evapotranspiração de referência em Seropédica, RJ. **Revista Brasileira de Engenharia Agrícola e Ambiental** 15(8): 838-844, 2011.

CARVALHO, D. F.; SILVA, L. D. B.; GUERRA, J. G. M.; CRUZ, F. A. Instalação, calibração e funcionamento de um lisímetro de pesagem. **Engenharia Agrícola** 27: 363-372, 2007.

CHANG, J. Climate and Agriculture: an ecological survey. Aldine Publication Cap. 13 Evapotranspiration, Chicago, p.129-143. 1968.

CHEN, R. S.; ERSI, K.; YANG, J. P.; LU, S. H.; ZHAO, W. Z. Validation of five global radiation models with measured daily data in China. **Energy Conversion and Management** 45: 1759-1769, 2004.

R.; VOLPE, C. CUNHA, A. A.; ESCOBEDO, J. F. Estimativa da referência evapotranspiração de pelo método de Penman-Monteith (FAO-56) com saldo de radiação medido por diferentes sensores. Agronomía Tropical 58(1): 74-84, 2008.

DAUT, I.; IRWANTO, M.; IRWAN, Y. M.; GOMESH, N.; AHMAD, N. S. Combination of Hargreaves method and linear regression as a new method to estimate solar radiation in Perlis, Northern Malaysia. **Solar Energy** 85: 2871-2880, 2011.

DE JONG, R.; STEWART, D. W. Estimating global solar radiation from common meteorological observations in western Canada. **Journal Plant Science** 73: 509-518, 1993.

DONATELLI, M.; CAMPBELL, G. S. A simple model to estimate global solar radiation. In: **Proceedings** of Fifth ESA Congress, vol. 2, Nitra, Slovak Republic, 28 June–2 July 1998, The Slovak Agriculture University, Nitra, Slovak Republic, p. 133-134. 1998.

DORNELAS, K. D. S.; SILVA, C. L.; OLIVEIRA, C. A. S. Coeficientes médios da equação de Angström-Prescott, radiação solar e evapotranspiração de referência em Brasília. **Pesquisa Agropecuária Brasileira** 41(8): 1213-1219, 2006.

ELIZONDO, D.; HOOGENBOOM, G.; McCLENDON, R. W. Development of a neural network to predict daily solar radiation. **Agricultural and Forest Meteorology** 71(1-2): 115-132, 1994. DOI:

EL-SEBAII, A. A.; TRABEA, A. A. Estimation of horizontal diffuse solar radiation in Egypt. **Energy Conversion and Management** 44(15): 2471-82, 2003.

FALAMARZI, Y.; PALIZDAN, N.; HUANG, Y. F.; LEE, T. S. Estimating evapotranspiration from temperature and wind speed data using artificial and waveletneuralnetworks(WNNs).AgriculturalWaterManagement140(10): 26-36, 2014.

GAVILÁN, P.; BERENGENA, J.: G. Measuring ALLEN. R. versus estimating net radiation and soil heat flux: impact on Penman-Monteith reference ET estimates in semiarid regions. **Agricultural Water Management** 89(3): 275-286, 2007.

GOODIN, D. G.; HUTCHINSON, J. M. S.; VANDERLIP, R. L.; KNAPP, M. C. Estimating solar irradiance for crop modelling using daily air temperature data. **Agronomy Journal** 91: 845-851, 1999.

HANSEN, J. W. Stochastic daily solar irradiance for biological modelling applications. Agricultural and Forest Meteorology 94(1): 53-63, 1999.

HARGREAVES, G. H. **Responding to tropical climates**. In: The 1980–81 Food and Climate Review, The Food and Climate Forum, Aspen Institute for Humanistic Studies, Boulder, Colo, p. 29– 32. 1981.

HARGREAVES, G. H.; SAMANI, Z. A. Estimating potential evapotranspiration. Journal of Irrigation and Drainage. ASCE, 108: 225-30, 1982.

HOOK, J. E.; McCLENDON, R. W. Estimation of solar radiation data from long-term meteorological records. **Agronomy Journal** 84(4): 739-42, 1992.

HUNT, L. A.; KUCHAR, L.; SWANTON, C. J. Estimation of solar radiation for use in crop modelling. **Agricultural and Forest Meteorology** 91: 293-300, 1998.

IQBAL, M. An introduction to solar radiation. Canadá: Academic Press, 1983. 390p.

LIU, D. L.; SCOTT, B. J. Estimation of solar radiation in Australia from rainfall and temperature observations. Agricultural and Forest Meteorology 106(1): 41-59, 2001.

MAHMOOD, R.; HUBBARD, K. G. Effect of time of temperature and estimation of daily solar radiation for the Northern Great Plains, USA. **Agronomy Journal** 94: 723-733, 2002. MANCOSU, N.; SNYDER, R. L.; SPANO, D. Procedures to develop a standardized reference evapotranspiration zone map. Journal of Irrigation and Drainage Engineering 140(9): 1-11, 2014.

MARTÍ, P.; ROYUELA, A.; MANZANO, J.; PALAU-SALVADOR, G. Generalization of ETo ANN models

through data supplanting. Journal of Irrigation and Drainage Engineering 136: 161-174, 2010.

MEZA, F.; VARAS, E. Estimation of mean monthly solar global radiation as a function of temperature. **Agricultural and Forest Meteorology** 100(2-3): 231-241, 2000.

PEREIRA, A. R.; VILLA NOVA, N. A.; SEDIYAMA, G. C. **Evapo(transpi)ração**. Piracicaba: FEALQ, 183p. 1997.

PINKER, R. T.; FROUIN, R.; LI, Z. A review of satellite methods to derive surface shortwave irradiance. **Remote Sensing Environment** 51(1): 108-124, 1995.

RAZIEI, T.; PEREIRA, L. S. Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran. **Agricultural Water Management** 121(6): 1-18, 2013.

REDDY, K.S.; RANJAN, M. Solar resource estimation using artificial neural networks and comparison with other correlation models. **Energy Conversion and Management** 44(15): 2519-2530, 2003.

RICHARDSON, C. W.; WRIGHT, D. A. WGEN: A Model for generating Daily Weather Variables. USDA, **Agricultural Research Service ARS-8**, USA. 1984.

RIVINGTON, M.; MATTHEWS, K. B.; BELLOCCHI, G.; BUCHAN, K. Evaluating uncertainty introduced to process-based simulation model estimates by alternative sources of meteorological data. **Agricultural Systems** 88(2-3): 451-471, 2006.

SAMANI, Z. Estimating solar radiation and evapotranspiration using minimum climatological data. **Journal Irrigation** **Drainage Engeneering** 126(4): 265-267, 2000.

SENTELHAS, P. C.; GILLESPIE,T. J.; SANTOS, E. A. Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canadá. Agricultural Water Management 97(5): 635-644, 2010.

SMITH, M. Report on the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements: Rome: FAO, 54p. 1991.

SOLTANI, A.; MEINKE, H.; DE VOIL, P. Assessing linear interpolation to generate daily radiation and temperature data for use in crop simulations. **European Journal Agrononomy** 21: 133-148, 2004.

SOUZA, A. P.; ESCOBEDO, J. F. Estimativas da radiação global incidente em superfíciesinclinadas com base na razão de insolação. **Revista Brasileira de Ciências Agrárias** 8(3): 483-491, 2013.

SOUZA, A. P.; MOTA, L. L.; ZAMADEI, T.; MARTIM, C. C.; ALMEIDA, F. T.; PAULINO, J. Classificação climática e balanço hídrico climatológico no estado de Mato Grosso. **Nativa** 1(1): 34-43, 2013.

SOUZA, A. P.; CARVALHO, D. F.; SILVA, L. D. B.; ALMEIDA, F. T.; ROCHA, H. S. Estimativas da evapotranspiração de referência em diferentes condições de nebulosidade. **Pesquisa Agropecuária Brasileira** 46(3): 219-228, 2011.

TANAKA, A. A.; SOUZA, A. P.; KLAR, A. E.; SILVA, A. C.; GOMES, A. W. A. Estimativas da evapotranspiração de referência para o Estado de Mato Grosso por métodos simplificados. **Pesquisa Agropecuária Brasileira** 51(2): 91-104, 2016.

THORNTON, P. E.; RUNNING, S. W. An improved algorithm for estimating incident solar radiation from measurements of temperature, humidity and precipitation. **Agricultural and Forest Meteorology** 93: 211–228, 1999.

TODOROVIC,M.;KARIC,B.;PEREIRA,L.S.Reference

evapotranspiration estimate with limited weather data across a range of Mediterranean climates. **Journal of Hydrology** 481(1): 166-176, 2013.

TRNKA, M.; ZALUD, Z.; EITZINGER, J.; DUBROVSKÝ, M. Global solar radiation in Central European lowlands estimated by various empirical formulae. **Agricultural and Forest Meteorology** 131: 54-76, 2005.

ZANETTI, S. S.; SOUZA, E. F; CARVALHO, D. F. de; BERNARDO, S. Estimação da evapotranspiração de referência no Estado do Rio de Janeiro usando redes neurais artificiais. **Revista Brasileira de Engenharia Agrícola e Ambiental** 12(2): 174-180, 2008.

WEISS, A.; HAYS, C. J.; HU, Q.; EASTERLING, W. E. Incorporating bias error in calculating solar irradiance: implications for crop yield simulations. **Agronomy Journal** 93: 1321–1326, 2001. WU, G., LIN, Y., WANG, T. Method and strategy for modeling daily global solar radiation with measured meteorological data- a case study in Nanchang station, China. **Energy Conversion and Management** 48(9): 2447–2452, 2007.

YIN, Y.; WU, S.; ZHENG, D.; YANG, Q. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China. Agricultural Water Management 95(1): 77-84, 2008.