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Abstract 

This study presents the application of kinetic modeling and Neuro-Fuzzy techniques in 

ethanol production. The research aims to optimize the fermentation process by 

employing the Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict ethanol yield 

under different conditions. Initially, sugarcane juice was used as a raw material and 

subjected to fractional distillation to obtain ethanol. The experimental data were analyzed 

using artificial neural networks and fuzzy logic to develop a predictive model. The 

ANFIS hybrid model demonstrated high accuracy in forecasting ethanol production, 

allowing for process optimization and cost reduction. Additionally, the kinetic analysis 

of fermentation provided insights into substrate consumption and ethanol yield 

efficiency. The results indicate that the Neuro-Fuzzy approach is a powerful tool for 

improving bioethanol production processes, enhancing both efficiency and 

sustainability. 
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Introduction 

The use of renewable energy is one of the most important 

strategies for facing the challenges related to climate change 

and the scarcity of natural resources (SMITH et al., 2013). 

Renewable energy comes from natural sources that are 

constantly replenished and do not run out, unlike fossil fuels, 

which are finite and cause serious damage to the environment 

when burned (SAIDUR et al., 2011). Some examples of 

renewable energy include solar energy, wind energy, 

hydroelectric energy, geothermal energy and biomass 

(CANEPPELE; SERAPHIM, 2010). The transition to the use 

of renewable energy is essential to reduce greenhouse gas 

emissions, combat air pollution, preserve natural ecosystems 

and increase the share of clean sources in the energy matrix 

(GODINHO et al., 2023).  

In this context, economic and environmental analysis 

stands out as a crucial point, comparing that the production of 

biodiesel from virgin soybean oil can not only meet energy 

demands, but also contribute significantly to the reduction of 

pollutant gas emissions. The advanced technique of this 

approach reinforces the continued importance of research and 

development of technologies that drive the transition to 

cleaner and renewable energy sources (FERMINO et al, 

2024). To advance the adoption of renewable energy, it is 

crucial to support public policies that encourage research, 

development and installation of these technologies, as well as 

to raise awareness and engage society in the adoption of more 

sustainable practices, such as the application of models that 

optimize processes and reduce production costs. Modeling 

plays a fundamental role in the optimization of the production 

process in various industries and sectors, including 

agribusiness (CANEPPELE; SERAPHIM, 2010). It allows 

companies to simulate and analyze different scenarios, 

identifying opportunities for improvement, cost reduction, 

increased efficiency and improved product quality. Within 

optimization processes, Fuzzy Logic, also known as fuzzy 

logic, is highly relevant, as it operates in a branch of logic that 

deals with uncertainty and ambiguity, allowing systems to 

process vague or imprecise concepts (VASAKI et al., 2021). 

Fuzzy Logic relies on an Artificial Intelligence called Neuro-

Fuzzy, which combines neural networks and fuzzy logic to 

solve complex problems involving uncertainty and 

imprecision (YADAV; BHASKER; UPADHYAY, 2022). In 

this context, the objective of this article is to develop a Fuzzy 

model based on results obtained in a practical class on ethanol 

production. 

Materials and methods 

Initially, the raw material used in the experiment 

(represented by a yellowish liquid) is applied to a thermal 

separation process by fractional distillation. The distillation 

system consists of a distillation flask, where the sample is 

heated, an approach to control the temperature, a condenser 

responsible for converting the vapors into the liquid phase and 

a collection flask intended for storing the distillate obtained. 

The process aims to selectively separate the volatile 

components, ensuring the production of a product with a 

higher degree of purity, as indicated by the colorless liquid in 

the Erlenmeyer flask. The experimental data are subsequently 

analyzed through computational modeling, using an approach 

based on artificial neural networks and fuzzy logic 

(NeuroFuzzy). 
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Laboratory experimentation 

The work was conducted in the Chemistry Laboratory of 

the Sagrado Coração University Center UNISAGRADO, in 

the city of Bauru - SP. The sugarcane juice used in the 

experiment was purchased from a street vendor. After 

purchase, the juice was placed in 4.0 L PET bottles and stored 

in a simple refrigerator to be used in future work, since the 

objective was not to evaluate the juice, but rather to develop a 

model. The fermentation process was developed according to 

the guidelines of (GODINHO et al., 2023b). The yeast used in 

the laboratory work was Mauri® biological yeast 500 grams, 

in addition to União® crystal sugar and water. 

Development of the neuro-fuzzy model 

In this work, a hybrid ANFIS model was used to predict 

ethanol production in the laboratory. This hybrid approach is 

recommended for energy efficiency analyses (NARDEZ et al., 

2018). Figure 1 illustrates the experimental setup used for the 

experimental metrology flowchart for fuzzy and kinetic 

modeling.  

The system was modeled using the ANN (Artificial Neural 

Networks) method, combining logic. Fuzzy based on the 

Takagi-Sugeno Fuzzy inference process to define the 

characteristics of the ANFIS model (Figure 2) (SALEEM et 

al., 2021). The model was trained in 50 possible tests based on 

the database, developed with the results collected in the 

laboratory, as shown in Figure 3.  

 

 

Figure 1. Experimental metrology flowchart for fuzzy and 

kinetic modeling. 

 

 

Figure 2. ANFIS model developed for ethanol production. 

 

Figure 3. Training of the ANFIS model. 

The modeling was performed using the commercial 

software MATLAB®, licensed by the Agroenerbio Research 

Group of FZEA/USP, with computational assistance from the 

Fuzzy Logic Toolbox, the ANFIS command line function, and 

the Neuro-Fuzzy Designer iterative application. 

The proposed hybrid ANFIS model was developed with 2 

input variables, namely biological [yeast] and temperature, 

with 3 relevance variables for biological (g.L-1 – 1, 2, and 3) 

and 4 for temperature (°C - 80, 85, 90, and 95), resulting in 24 

correlations (fuzzy rules) that the fuzzy system itself develops 

and is described in Figure 2. In the transformation stage, the 

discrete values of the input variables were converted into fuzzy 

values (fuzzification), adopting Gaussian-type relevance 

functions. 

In addition, an output variable was adopted, the alcohol 

content (°GL). Finally, the weighted average of all rule outputs 

was adopted, as it is the standard for Takagi-Sugeno inference 

systems, which is used in the MATLAB® Fuzzy system. The 

methodological procedures used to model the proposed 

ANFIS were compatible with the methods adopted by 

(FURLONG et al., 2019). 

Kinetics of alcoholic fermentation 

By analyzing the results, it was possible to obtain the 

instantaneous and specific velocities for certain points, based 

on the derivative of the equation generated by the regression 

of the curves.  

According to Lee (2008), the formulas were extracted from 

the kinetics of fermentation processes, which is the analysis of 

the concentration values of one or more components of the 

cultivation system as a function of the cultivation time. 

Components are understood as the microorganism (or 

biomass), the metabolic products (metabolites) and the 

nutrients or substrates that make up the culture medium. This 

analysis is essential to optimize the production of metabolites 

of industrial interest and improve the efficiency of 

fermentation processes, as discussed by Bailey and Ollis 

(2012) in their studies on bioprocess engineering. 

The specific speed of reproduction of microorganisms, 

also known as specific growth rate or specific growth rate, is 

an important parameter that describes how quickly a 
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population of microorganisms multiplies under ideal growth 

conditions. In other words, the specific speed of reproduction 

indicates how many times the population doubles its size 

during a given time interval (SANTOS et al., 2018). 

The instantaneous speed of reproduction of 

microorganisms, substrate consumption and product 

formation can be represented by the following expressions, as 

per (SANTOS et al., 2018) (Equations 1, 2 and 3). 

𝑟𝑥 =
𝑑𝑠

𝑑𝑡
   Equation (1) 

𝑟𝑠 =
𝑑𝑠

𝑑𝑡
   Equation (2) 

𝑟𝑝 =
𝑑𝑠

𝑑𝑡
   Equation (3) 

where: 𝑟𝑥 = instantaneous growth rate, in g.L-1.h-1,  

𝑟𝑠 = instantaneous rate of substrate consumption, in g.L-1.h-1, 

and 𝑟𝑝 = instantaneous rate of product formation, in g.L-1.h-1. 

The specific rate of reproduction of microorganisms, of 

substrate consumption and of product formation can be 

represented by the following expressions (Equations 4, 5 and 

6). 

𝜇𝑥 = 1. 𝑥−1 ∫
𝑑𝑥

𝑑𝑡
    Equation (4) 

𝜇𝑠 = 1. 𝑥−1 ∫
𝑑𝑠

𝑑𝑡
   Equation (5) 

𝜇𝑝 = 1. 𝑥−1 ∫
𝑑𝑝

𝑑𝑡
   Equation (6) 

where: 𝜇𝑥 = specific growth rate, in h-1, 𝜇𝑠 = specific rate of 

substrate consumption, in h-1, and 𝜇𝑝 = specific rate of product 

formation, in h-1. 

The efficiency of the fermentation process refers to the 

capacity of a fermentation system to convert substrates (such 

as sugars) into desired products (such as ethanol, lactic acid, 

acetic acid, etc.) quickly, completely and economically, with 

fermentation being a biological process that occurs under 

anaerobic conditions, that is, in the absence of oxygen 

(ZANARDI; COSTA JR., 2015). 

According to Stanbury, Whitaker and Hall (2016), the 

efficiency of a fermentation process can be assessed through 

several critical parameters, such as substrate conversion, 

process yield, fermentation speed, contamination level, 

efficiency in product recovery and optimized use of available 

resources. 

The formula for calculating the efficiency of the 

fermentation process is as follows, according to (FERRO, 

2023) (Equation 7). 

𝐸𝐸 =
𝑃

𝑆𝑐
𝑥100   Equation (7) 

where: 𝐸𝐸 = energy efficiency, in %, 𝑃 = product obtained in 

fermentation and 𝑆𝑐 = substrate consumed. 

Results and discussion 

Neuro-Fuzzy model results 

When applying Neuro-Fuzzy modeling, it is crucial to 

perform rigorous tests to validate the developed model, 

ensuring that it generalizes well to new data and maintains the 

robustness required for practical applications, as shown in 

Figure 4. These tests usually include cross-validation and 

prediction error analysis, which allow the model to be adjusted 

and improved based on its actual performance. Using tests in 

this context ensures that the modeled system is efficient and 

reliable in real-world operations, such as in industrial control 

processes or optimization of complex systems. The proposed 

ANFIS hybrid model presented adequate behavior and was 

compatible with the training and validation data. For graphical 

representation, different Fuzzy surface models were obtained, 

and minimum and maximum energy points were verified for 

different dosages, depending on the concrete components 

(Figure 5). 

 

Figure 4. Testing the ANFIS model. 

 

 

Figure 5. 3D graph for bioethanol production using different 

temperatures and yeast doses. 

Resulting kinetic velocity models  

The graph of the specific velocity of the product, evaluated 

during fermentation, is shown in Figure 6. The use of Neuro-

Fuzzy modeling has emerged as an effective approach to deal 

with complex systems, especially in those where uncertainty 

and nonlinearity are predominant. This technique combines 

Fuzzy logic, which is useful for modeling uncertainty and 

imprecision, with artificial neural networks, which have the 

ability to learn from data and identify patterns (CANEPPELE; 

SERAPHIM, 2010). 
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Figure 6. Curve of the specific speed of the product in h-1. 

The specific rate of ethanol production over time is a 

fundamental parameter in the optimization of fermentation 

processes, directly influencing the industrial efficiency of 

biofuel production. In recent studies, the kinetic analysis of 

alcoholic fermentation revealed that the specific rate of 

ethanol production tends to increase during the initial phases 

of fermentation, reaching a peak that corresponds to the 

maximum metabolic activity of yeasts. For example, 

Govindaswamy & Vane (2007) observed that, in 

fermentations conducted with Saccharomyces cerevisiae, the 

specific rate of ethanol production reached its maximum value 

in the first 12 hours of the process, coinciding with the 

logarithmic phase of cell growth. 

As discussed by Fan et al. (2014), after reaching the peak, 

the specific rate of ethanol production generally decreases due 

to substrate depletion and the accumulation of inhibitory 

products in the medium, such as ethanol itself. These authors 

reported that, in a batch system, the specific rate of ethanol 

production began to decline significantly after 24 hours of 

fermentation, resulting in a total production rate of ethanol 

production lower than expected for continuous processes. 

Understanding these patterns is crucial for implementing 

control strategies, such as the gradual addition of substrate or 

the use of bioreactors with cell recycling, which can maintain 

fermentation activity at optimal levels for longer periods. 

In addition, the same authors emphasize the importance of 

correlating the specific rate of ethanol production with 

environmental variables, such as temperature and pH of the 

medium, which can significantly influence fermentation 

performance. In their experiments, they demonstrated that 

maintaining optimal pH conditions (between 4.5 and 5.0) 

resulted in greater stability of the specific rate of ethanol 

production over time, preventing the abrupt drop observed in 

suboptimal conditions. This knowledge is essential for the 

optimization of industrial processes, where maximizing 

productivity and minimizing operating costs are primary 

objectives. 

Conclusions 

Neuro-Fuzzy modeling has proven to be an effective 

approach for predicting and improving complex systems, 

ensuring robustness and reliability in the analysis of industrial 

processes. The proposed ANFIS hybrid model showed 

adequate behavior, compatible with the training and validation 

data, demonstrating its applicability in the optimization of 

integration systems. In addition, a kinetic analysis revealed 

that a specific ethanol production rate reaches an initial peak, 

followed by a drop due to substrate depletion and 

accumulation of inhibitors, highlighting the importance of 

precise control of variables such as temperature and pH to 

maximize process efficiency. 

This study concludes that significant variations in total 

energy demand can occur for different dosages and that this 

information can be used to predict dosages with lower energy 

input, with mechanical resistance to compression of 

characteristics similar to those with higher input. It was also 

found that this change can generate savings in the energy cost 

of dosages of around 24.77% for a conventional reinforced 

concrete construction. 

Finally, it is inferred that the ANFIS hybrid model can be 

the necessary apparatus for prediction and energy savings, 

making the concrete production process more sustainable. 

This research confirmed the need for studies on the energy 

balance in the production process of environmentally 

sustainable concrete, with investigations almost always 

focused on the insertion of non-conventional materials in the 

concrete. This is only the study of the growth kinetics and 

substrate consumption. It is important to emphasize that in 

order to choose yeast, in addition to the kinetics study, it is also 

important to analyze the sensory characteristics of aroma and 

flavor developed by the yeast in the final product.  
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