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Abstract 

The common bean is a crop of substantial socioeconomic importance that is cultivated 

throughout the Brazilian territory. Despite that, studies conducted so far have shown 

limitations in the methodologies used for yield estimation. In this sense, emerging 

technologies such as unmanned aerial vehicles (UAVs) can help both in crop monitoring 

and in assessing crop yield. Therefore, this study aimed: (1) to estimate the bean yield 

using spectral variables derived from UAV imagery and (2) to define the best vegetative 

stage for yield estimation. For this, data from a field experiment were used. The beans 

were planted in a conventional system in an area of 600 m² (20 x 30 m). During the crop 

cycle, six flights were carried out using a UAV equipped with a five-band multispectral 

camera (Red, Green, Blue, Red Edge, and Near-infrared). After that, 10 spectral variables 

composed of the bands and five vegetation indices (VIs) were obtained. At the end of the 

season, the area was harvested, and the yield (kg ha-1) was determined. Then, the data 

was submitted to correlation (r), and regression analysis. Overall, all developed models 

showed moderate performance, but in accordance with the literature, with R² and RMSE 

values ranging from 0.52 to 0.57 and from 252.79 to 208.84 kg ha-1, respectively. 

Regarding the best vegetative stage for yield estimation, the selected models used data 

from the second flight (52 days after planting) at the beginning of pod formation and 

filling (between stages R7 and R8). 
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Introduction 

Nowadays, there exists a growing concern regarding 

global food security and environmental conservation, 

underlined by the need to achieve a projected 70% increase in 

food production by 2050 to accommodate the expanding world 

population. The common bean (Phaseolus vulgaris L.), a crop 

of substantial socioeconomic importance, is ubiquitously 

cultivated throughout Brazil, catering to the needs of small, 

medium, and large-scale producers (Hiolanda et al., 2018; de 

Andrade et al., 2020). Within the Brazilian culinary context, it 

assumes a pivotal role as a primary staple, distinguished for its 

role as a low-fat energy source. According to the CONAB 

(Brazilian National Supply Company), the national production 

in the 2022 harvest reached an average of 3083.6 tons, with a 

productivity of 1095.0 kg ha-1, covering an area of 2816.1 ha 

(CONAB, 2022). 

Bean cultivation is practiced throughout all Brazilian 

regions, and due to its short growth cycle (60-70 days), it 

offers the advantage of being planted in three distinct periods 

throughout the year. In this case, the first crop is considered 

between August and December, the second crop between 

January and April, and the third crop between May and July 

(CONAB, 2021). The ability to produce three crops annually 

has been made possible by advancements in field technologies, 

such as seed genetic improvement, more precise fertilization, 

and the use of irrigation to supplement the crop's water 

demand. 

Thus, given the growing demand for food and the urgent 

need to feed the burgeoning population, early yield estimations 

became crucial for food security and agricultural practices 

(Ramos et al., 2020; Zhao et al., 2020). Moreover, yield 

estimates are fundamental to driving governmental policies, 

and for market behavior. The entire process of sales and 

decision-making must rely on an accurate estimate of the 

expected yield. Traditionally, the crop yield is estimated by 

harvesting a few plants on the field, whose yield is then 

extrapolated to the entire production area (Lipovac et al., 2022; 

Ranjan et al., 2019). These evaluations are time-consuming, 

labor-intensive, and most importantly destructive (Araus and 

Cairns, 2014; Bellvert et al., 2014). Moreover, despite this, 

only a fraction of farmers succeed in fully harnessing the 

productive potential of the crop and precisely forecasting crop 

yield. This is chiefly attributed to management challenges like 
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inadequate use of fertilizers and soil amendments, aggravated 

by climatic factors (Finger et al., 2019; Nowak, 2021). 

As a solution, precision agriculture (PA) offers a diversity 

of tools that can improve yield estimates. PA is a management 

strategy that takes account of temporal and spatial variability 

to improve sustainability of agricultural production (ISPA, 

2024). Among its different tools, remote sensing (RS) have 

gained huge attention in agricultural crop production 

management (Ranjan et al., 2019). RS has the potential of 

playing a determinant role as a spatial information source. 

Moreover, RS-based technologies provide low-cost, timely 

and accurate information on crop status and have been 

effectively used in yield estimates of several crops (Da Silva 

et al., 2020; Gao et al., 2018; Hassan et al., 2019; Rehman et 

al., 2019). Recently, with the advent of Unmanned Aerial 

Vehicles (UAV platforms and miniaturization of Red-Green-

Blue - RGB, multispectral and hyperspectral sensors, remote 

monitoring of crops has intensified. This technology is 

primarily based on the use of sensors (cameras) onboard UAV 

platforms, which have the advantages of convenient operation, 

high flexibility, and strong adaptability to the spatiotemporal 

resolution needed (Ji et al., 2022). 

Recent studies on the bean crop have focused on using 

spectral information derived from UAV imagery for water 

stress and yield assessment (Ranjan et al., 2019; Zhou et al., 

2018), yield prediction with different irrigation depths and 

sowing periods (Lipovac et al., 2022), plant height and yield 

estimation (Ji et al., 2022), phenotyping of bean cultivars 

tolerant to drought and low nitrogen stress (Sankaran et al., 

2018) plant height, leaf area index and chlorophyll content 

estimation (Quille-Mamani et al., 2022), and yield prediction 

of different bean cultivars (Saravia et al., 2023). 

All these studies were based on the use of vegetation 

indices (VIs) to assess the spectral response of the vegetation. 

VIs are mathematical combinations of different wavelengths. 

Normally, the VIs are used to highlight plant intrinsic 

characteristics that are related to crop characteristics (e.g., 

greenness, vigor, nutritional status, and crop yield) (Baloloy et 

al., 2020). Given the close relationship between VIs and the 

plant characteristics such as yield, it can be used as input for 

the development of yield estimation models. The relationship 

between the crop yield and the VIs is explained by the fact that 

yield is a function of canopy characteristics, such as 

chlorophyll content, biomass, and canopy architecture, whose 

association was already evaluated previously (Baio et al., 

2018; Zhao et al. 2007; Zhao et al., 2020). 

For the bean crop, the studies mentioned above, 

specifically those related to yield assessment have used 

spectral variables (bands and VIs) to reach their purpose. 

However, none of them considered the association of multiple 

spectral variables to improve model performance nor did they 

define the best vegetative stage for yield estimation. 

Therefore, this study aimed: (1) to estimate the bean yield 

using spectral variables (bands and VIs) derived from UAV 

imagery and (2) to define the best vegetative stage for yield 

estimation. 

Materials and methods 

Study area 

The field experiment was conducted from April 2019 to 

August 2019 in an area of 600 m² at the Universidade Federal 

de Viçosa, municipality of Viçosa, southeastern Brazil (20°45' 

S, 42°52' W, and 649 m above sea level) (Figure 1). The 

climate in the area, according to the Köppen-Geiger 

classification system, is classified as humid subtropical with 

dry winter and hot summer (CWA) (Alvares et al., 2013). The 

soil was a Yellow-red Oxisol with a clay loam texture 

composed of 40 % clay, 18 % silt, and 42 % sand (Soil Survey 

Staff, 2014).

 

 

Figure 1. Location of the experimental field. 
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Crop traits 

The crop used in the experiment was the common bean 

(Phaseolus vulgaris L.), variety Carioca. The bean was planted 

in a conventional system using an area that was divided into 

18 experimental plots measuring 20 m² (2 x 10 m). Sowing 

was conducted on April 24th, 2019, with the application of 350 

kg ha-1 of N-P2O5-K2O (formulation: 4-14-8 %) distributed 

over the planting rows. 

After planting, weed control was conducted using 2 L ha-1 

of the herbicide Fusiflex. As for the slug control, 3 g m-2 of the 

insecticide Lesmax was applied. Lastly, the control of 

whiteflies and Diabrotica speciosa was conducted using 150 g 

ha-1 of the insecticide Evidence. The remaining crop traits 

were conducted following local procedures as described in 

Martins et al. (2021). 

At the physiological maturity stage (September 8th, 2019), 

the bean plants from the three central rows within the useful 

area of each plot (useful area: 9 x 1 m) were manually 

harvested. Then, the bean moisture content was determined 

using the methodology established in the Seed Analysis 

Standards (Brasil, 2009). Finally, the bean yield (kg ha-1) was 

adjusted to 13% moisture content 

Data acquisition 

Multispectral imagery acquisition and processing 

Imagery acquisition in the study area was conducted using 

a multispectral camera MicaSense RedEdge MX (MicaSense, 

Seattle, WA, USA) onboard an unmanned aerial vehicle 

(UAV), DJI Matrice 100 (DJI Innovations, Shenzhen, China). 

The RedEdge MX is composed of five CMOS sensors 

(complementary metal oxide semiconductor) that capture the 

following bands: (1) blue (455–495 nm); (2) green (540–580 

nm); (3) red (658–678 nm); (4) red edge (RE) (707–727 nm); 

and (5) near-infrared (NIR) (800–880 nm). 

All UAV flights were conducted in autonomous mode with 

a flight plan previously defined in the laboratory using the 

DroneDeploy software (Infatics Inc. San Francisco, 

California, USA). In addition, the images from all flights were 

captured around 12:00h local time, aiming to minimize 

environmental effects, such as cloud presence and solar angle 

influence. The flights were carried out between June and July 

2019 (Table 1) at 9.3 m s-1 speed with 80% and 75% of lateral 

and longitudinal overlap, respectively.  Additionally, the flight 

altitude and spatial resolution of the orthomosaics were 25 m 

and 1.4 cm, respectively. 

Table 1. Flight date, days after planting (DAP), and the vegetative stage 

Flight date DAP Vegetative stage 

07/06/2019 45 R5 

14/06/2019 52 R7 

24/06/2019 62 R7 

05/07/2019 73 R8 

23/07/2019 91 R8 

31/07/2019 99 R9 

R5: Pre-flowering; R7: Pod formation; R8: Pod filling; R9: Physiological maturity. 

 

All UAV images were acquired with 12 bits in raw format, 

preserving the information (e.g., contrast, sharpness, etc), 

without processing and compression at the time of acquisition. 

Next, to perform the radiometric calibration in postprocessing, 

before and after each flight, images of the reflectance 

calibration target provided by the MicaSense were taken at 

1.00 m height. After that, the orthomosaics were obtained 

using the Agisoft™ MetaShape software, version 1.5.3 

(Agisoft LLC, St. Petersburg, Russia) following the 

procedures from the image alignment to the creation, and 

georeferencing of the orthomosaics as detailed in Nogueira 

Martins et al. (2021). The orthomosaics were georeferenced in 

the QGIS software, version 3.2 (Team QGIS Development, 

2016) using as reference 10 ground control points (GCP), 

previously placed in the experimental area. The GCPs were 

georeferenced using a GNSS (Global Navigation Satellite 

System), receiver Trimble ProXT (Trimble Inc., Sunnyvale, 

CA, USA). 

Definition and extraction of the spectral variables 

From the orthomosaics, the five spectral bands (RGB, Red 

Edge, and NIR) and the following VIs were obtained in the 

QGIS software: Normalized Difference Vegetation Index 

(NDVI); Green Normalized Difference Vegetation Index 

(GNDVI); Optimized Soil-Adjusted Vegetation Index 

(OSAVI); Normalized Difference Red Edge Index (NDRE); 

and Spectral Feature Depth Vegetation Index (SFDVI) (Table 

2). 

The use of VIs is crucial for minimizing the variability 

caused by external factors. VIs are sensitive to the plant 

biomass; hence, sensitive to the amount of chlorophyll present 

in a specific area. Coupled with that, the amount of biomass 

has been associated with the leaf area index and the crop yield 

in previous studies (Li et al., 2020; Macedo et al., 2023; da 

Silva et al., 2020; Yue et al., 2020). Based on that, the criteria 

for selecting the VIs were that: (1) the existing bands obtained 

by the multispectral camera could be used; and (2) that they 

had a good relationship with vegetation pigments and also with 

the crop nutritional status. Lastly, all spectral variables were 

obtained for the vegetative stages presented in Table 1. 

To extract the spectral variables (VIs and spectral bands), 

polygon masks were delineated to cover the extension of the 

experimental plots using the QGIS software. Then, from the 

creation of the polygons, the average, minimum, maximum 

and standard deviation values of the reflectance of the spectral 

bands and VIs were extracted using the zonal statistics tool. 

Finally, a database was created in Excel using the extracted 

data for subsequent analysis. 
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Table 2. References and equations of the vegetation indices used in this study 

Equation Reference 

NDVI = (N - R) / (N + R) (Rouse et al., 1973) 

GNDVI = (N - G) / (G + G) (Gitelson et al., 1996) 

OSAVI = (N - R) / (N + R + 0,16) (Rondeaux et al., 1996) 

SFDVI = ((N + G) / 2) - (( R + RE ) / 2) (Baptista, 2015) 

NDRE = (N - RE) / (N + RE) (Gitelson; Merzlyak, 1994) 

R, Red; G, Green; B, Blue; N, Near-infrared; and RE, Red Edge band. 

Data analysis 

The spectral variables corresponding to different UAV 

flight dates, along with the bean yield data, were initially 

subjected to descriptive statistical analysis. This involved 

generating boxplots for all variables to provide a general 

characterization throughout the crop cycle. The normality of 

the data was assessed using the Shapiro-Wilk test. Next, a 

Pearson correlation analysis (r) was conducted to evaluate the 

degree of association between the spectral variables (spectral 

bands and VIs) and the crop yield. For this analysis, only 

correlations with values above 0.4 were selected to 

demonstrate the variables tending to exhibit a stronger 

association with the bean yield. The remaining results are 

available in supplementary material. 

Subsequently, simple and multiple linear regression 

analyses were carried out considering the different UAV flight 

dates. The significance of the regression coefficients was 

assessed using the t-test at a 5% probability level (p<0.05). 

Then, to infer which spectral variable or the combination of 

variables between the different flight dates presented the best 

result for yield estimation, the following metrics were 

calculated: Coefficient of determination (R²) and Root mean 

square error (RMSE). The selection of spectral variables to 

compose the regression models was carried out using the 

algorithm best subset regression through the ‘olsrr’ package 

(Hebbali, 2022). The algorithm fits all possible models using 

the spectral variables from all UAV flights and displays the 

best candidates based on the highest R² and lowest RMSE 

values. Lastly, all statistical analyses were performed using R 

software, version 3.6.3 (Team R Core, 2020). 

Results and discussion 

General characterization of the spectral variables and the 

bean yield 

Boxplots of the temporal variation of the spectral variables 

on the six UAV flights carried out throughout the development 

of the bean crop are presented in Figure 2. 

 

 

Figure 2. Boxplot of the temporal variation of the spectral bands (A, B, C, D and E) and vegetation indices (F, G, H, I and J). 

As the plant develops to a certain point, under healthy 

conditions, it is expected that the spectral variables (VIs and 

bands) increase in accordance with their development up to the 

peak of vegetative vigor. This occurs due to the increase in the 

leaf area and, consequently, the plant canopy. This behavior 

was observed for all variables, except for the blue band (Figure 

2C), up to the third flight carried out 62 days after planting 

(DAP). Then, for the remaining flights, a tendency of 

reduction in the spectral variables values was expected, as the 

crop began to reduce its vigor due to senescence, characterized 
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by changes in the leaf structure and a reduction in chlorophyll 

activity (Lipovac et al., 2022; Merzlyak et al., 2002; Martins 

et al., 2021). However, among the spectral variables (VIs and 

bands) used, only the VIs showed such behavior (Figure 2F to 

2J). 

This behavior may be related to the lack of radiometric 

normalization between the orthomosaics from different dates. 

In the spectral bands, this can result in variations in lighting 

conditions during image acquisition, which directly influences 

the reflectance values between different flight dates, even if 

the flights were carried out at the same time. On the other hand, 

although the VIs are also affected by this issue, the 

normalization between the bands used in their acquisition ends 

up reducing this effect (Mercante et al., 2009; Yuan; Elvidge, 

1996). 

Thus, considering the phenological development of the 

bean crop, only the VIs were able to represent the development 

of the plant in the field. Overall, the use of VIs, integrated into 

a certain period of crop development, or even the entire cycle, 

has been associated with agronomic parameters such as 

biomass, plant height, leaf area index, and crop yield (Prudente 

et al., 2019; Quille-Mamani et al., 2022; Saravia et al., 2023). 

Regarding the crop yield variability, the values obtained 

from the experimental plots ranged from 2956.35 to 4459.56 

kg ha-1, with an average and standard deviation of 3709.85 and 

427.89 kg ha-1, respectively. 

Correlation between the spectral variables and the crop yield 

Results of the Pearson correlation (r) using the average, 

standard deviation, and minimum and maximum values of the 

spectral variables with bean yield are presented in Table 3. 

Similar to the average values, the other variables mentioned 

above were also extracted using the polygon masks in the 

experimental plots. These variables were used to identify 

variations in the crop's spectral response that, eventually, 

would not be identified when using only the average values. 

Due to the number of variables and the number of flights 

performed, it was decided to present only the correlation 

values above 0.4. In this case, it was observed that the OSAVI 

and GNDVI indices, obtained using the maximum value, 

whose data was extracted from the second flight (52 DAP), 

tended to present the highest correlations with the crop yield 

(r = 0.698, p < 0.01; and r = 0.573, p < 0.01). 

Compared to the metrics used, for the average data, the 

NDVI tended to show the greatest correlation (r = 0.568, p < 

0.01), while for the standard deviation and minimum values, 

respectively, the SFDVI (r = 0.530, p < 0.01) and the blue band 

(r = -0.546, p < 0.01) stood out, with both being obtained at 52 

DAP. 

Lastly, the variables that tended to present correlations of 

greater magnitude with the crop yield, on a greater number of 

occasions throughout the UAV flights, were the NDVI, 

SFDVI, and OSAVI indices, and the NIR band. In general, this 

trend was observed in flights 1, 2, and 3. This can be explained 

by the fact that the plant entered the physiological maturity 

between the fourth (73 DAP) and fifth flight (91 DAP) 

(Procópio et al., 2009), which influenced its spectral response 

(Figure 2) and, consequently, the correlation results. 

 

 

Table 3. Pearson correlation between the spectral variables and the crop yield using the average, standard deviation, and 

minimum and maximum values of these variables on different flight dates. 

Average Standard deviation 

Variable Date r Variable Date r 

NDVI 07/06 0.568*** SFDVI 07/06 0.481*** 

NDVI 24/06 0.491*** NDRE 07/06 0.471*** 

OSAVI 24/06 0.473*** RE 07/06 0.469*** 

RE 24/06 0.468*** NIR 07/06 0.490*** 

NIR 24/06 0.466*** SFDVI 14/06 0.530*** 

Minimum value Maximum value 

BLUE 14/06 -0.546*** SFDVI 07/06 0.484*** 

GREEN 14/06 -0.466*** OSAVI 14/06 0.698*** 

GNDVI 24/06 0.405** GNDVI 14/06 0.573*** 

NDVI 23/07 0.408* NDRE 14/06 0.442*** 

NDRE 31/07 0.404** NIR 24/06 0.403*** 

Bean yield estimation using spectral variables 

After selecting the variables, the model obtained using the 

minimum values showed the best fit, i.e., the highest R² and 

lowest RMSE (Figure 3C). Compared to the average yield 

obtained in the experimental plots (3709.85 kg ha-1), the 

RMSE values obtained for the different regression models 

presented estimation errors that ranged from 5.63 to 6.81%. 

This is equivalent to an estimation error of 3 to 5 bags of beans 

in a total of 62 bags ha-1. 

Among the selected models, the variables that stood out 

most in their construction were the RED and NIR bands and 

the VI OSAVI (Table 4). Apart from the RED band, which 

showed no significant correlation (p<0.05) with the bean yield, 

the NIR band and the OSAVI index showed significant 

correlations on at least two flight dates, as discussed before 

(Table 3). 
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Figure 3. Scatterplots of the estimated versus observed values of the crop yield obtained using the average (A), standard deviation 

(B), minimum (C), and maximum values (D) of the spectral variables. Black and red lines refer to the proposed and the reference 

regression models (1:1). 

Table 4. Best regression models for estimating the bean yield obtained using the average, standard deviation, minimum, and 

maximum values of the spectral variables on the six flight dates. 

Average (Flight 6 – 99 DAP) 

Yield(kg/ha) = - 133028.89 + 1019592.68 RED + 112529.85 GREEN – 42233.69 BLUE – 250615.29 REDEDGE + 209539.11 

NDVI – 99608.35 NDRE 

Standard deviation (Flight 3 – 74 DAP) 

Yield(kg/ha) = 4438.197 + 253308.69 REDEDGE – 325762.98 NIR + 59029.10 OSAVI + 479091.07 SFDVI 

Minimum value (Flight 4 – 91 DAP) 

Yield (kg/ha) = 4716.57 – 170177.92 RED + 137105.20 GREEN – 20371.60 NIR + 5421.08 NDVI + 14513.96 GNDVI – 

16084.35 OSAVI + 40226.38 NDRE 

Maximum value (Flight 2 – 52 DAP) 

Yield (kg/ha) = - 2413.83 + 8315.51 RED – 9529.38 BLUE + 3832.23 NIR + 33716.97 OSAVI 

DAP, days after planting. 

In general, all the yield estimation models performed in 

line with those observed in the literature. In a previous study, 

Lipovac et al. (2022) used different VIs such as NDVI, 

GNDVI, and MCARI1 (Modified Chlorophyll Absorption in 

Reflectance Index 1) to estimate the bean yield under different 

water deficit conditions. The R² values obtained by these 

authors ranged from 0.20 to 0.70. They also pointed out that 

the VIs NDVI (R² = 0.65) and MCARI1 (R² = 0.70) were 

capable of estimating the bean yield satisfactorily. 

In another study, Ranjan et al. (2019) used NDVI and 

GNDVI to estimate bean yield and reported R² values of 0.62 

and 0.54, respectively. In turn, Ji et al. (2022) used the plant 

height extracted from UAV images to estimate the bean yield. 

These authors reported R² values ranging from 0.50 to 0.64 
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and RMSE values from 990.01 to 838.61 kg ha-1. Finally, 

Zhou et al. (2018) observed correlations (r) ranging from 0.71 

to 0.72 of the GNDVI and canopy cover with bean yield at 54 

DAP in two crop cycles. 

More recently, Saravia et al. (2023) predicted the bean 

yield of four cultivars using 11 VIs derived from UAV 

imagery. First, these authors evaluated the correlation between 

the VIs and the crop yield on 13 dates (From 33 DAP to 118 

DAP) and reported significant associations with values 

varying from 0.28 to 0.63. As for the prediction models, the 

authors used a combination of models composed of three, four, 

and five VIs, and also a combination of the different VIs and 

flight dates through a principal component analysis. When 

considering the prediction of the four cultivars together, the R² 

values varied from 0.47 to 0.48. On the other hand, when the 

prediction was carried out individually for each cultivar, the 

results improved and ranged from 0,62 to 0.94. Although these 

results are more accurate than those observed in the present 

study, this reinforces the utility of UAV imagery to estimate 

or predict the bean yield before the harvest. 

Regarding the best flight date for estimating the bean yield, 

there was no consensus between the selected models. 

However, in the four models, all dates were always from or 

after the second flight (52 DAP) at the beginning of the R7 

vegetative stage. This finding is in line with the results 

observed by Saravia et al. (2023), who reported better 

prediction accuracies between the phenological stages R6 to 

R8. At these stages, the crop begins to form and fill the pods, 

which may have contributed to the better performance of the 

estimation models from this date onwards. Lastly, about the 

best variables, it was observed that the RED and NIR bands 

and the OSAVI index were present in most of the best yield 

estimation models. 

Limitations and recommendations for future studies 

The use of aerial remote sensing has expanded in 

monitoring different crops. For the bean crop, most studies 

using UAV images have been oriented toward monitoring 

diverse characteristics beyond productivity. Recent examples 

encompass plant height estimation (Ji et al., 2022; Quille-

Mamani et al., 2022), water stress detection (Ranjan et al., 

2019; Zhou et al., 2018), and the phenotyping of varieties 

resistant to drought and low doses of nitrogen (Sankaran et al., 

2022). 

Thus, a limitation exists in studies about yield estimation, 

hindering more intricate discussions regarding the 

performance of regression models developed utilizing spectral 

variables. This limitation further extends to the evaluation of 

the actual contribution of these variables to bean yield. 

Additionally, the paucity of studies correlating spectral 

variables with the yield data often involves the incorporation 

of other biometric variables into the estimation models, as 

previously elucidated in the discussion. Furthermore, apart 

from the constraint on the number of studies investigating bean 

yield estimation, there is still a need for the repetition of cycles 

(harvests) and more frequent monitoring to acquire a greater 

volume of data, as well as the use of more robust statistical 

models to improve analysis. 

Conclusions 

This study evaluated the potential of using UAV images 

for bean yield estimation. Additionally, efforts were made to 

identify the optimal timing and the most influential spectral 

variables for estimating the crop yield. Overall, all developed 

models demonstrated moderate performance (R² ranging from 

0.52 to 0.57; and RMSE ranging from 252.79 to 208.84 kg 

ha⁻¹), aligning with findings observed in the existing literature. 

Regarding the best date for estimating the bean yield, there 

was no consensus between the selected models. However, in 

the models developed, all dates were always from or after the 

second flight (52 DAP) at the beginning of pod formation and 

filling (between stages R7 and R8). Lastly, in terms of the most 

influential variables, it was observed that the Red (RED) and 

Near-Infrared (NIR) bands, along with the Optimized Soil-

Adjusted Vegetation Index (OSAVI), were prevalent in the 

majority of the top-performing models. Additionally, the NIR 

band and the OSAVI index were among the variables that 

tended to exhibit correlations of greater magnitude with the 

crop yield, in a greater number of times throughout the flights 

carried out. 
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