BAYESIAN REGULARIZED NEURAL NETWORKS APPROACH AND UNCERTAINTY ANALYSIS FOR REFERENCE EVAPOTRANSPIRATION MODELING ON SEMIARID AGROECOSYSTEMS

Authors

  • C. de O. F. Silva
  • A. H. de C. Teixeira
  • R. L. Manzione

DOI:

https://doi.org/10.18011/bioeng2020v14n1p73-84

Keywords:

modelling, R, Bayes, artificial intelligence in agriculture

Abstract

The Penman–Monteith equation (PM) is widely recommended by The Food and Agriculture Organization (FAO) as the method to calculate reference evapotranspiration (ET0). However, the detailed climatological data required by the PM are not often available. The present study aimed to develop bayesian regularized neural networks (BRNN)-based ET0 models and compare its results with the PM approach. Forteen weather stations were selected for this study,located in Juazeiro (BA) and Petrolina (PE) counties, Brazil. BRNN were trained with different parameters choices and obtained between 0.96 and 0.99 during training and between 0.95 and 0.98 with validation dataset. Root mean squared error (RMSE) less than 0.10 mm.day-1 for BRNN when compared to PM denoted the good performance of the network using only air temperature, solar radiation and wind speed at average daily scale as input variable. Epistemic and random uncertainties were evaluated and precipitation was identified as the variable with the greatest uncertainty, being therefore discarded for modeling.

Downloads

Download data is not yet available.

References

ABEDI-KOUPAI, J.; AMIRI M. J.; ESLAMIAN, S. S. Comparison of artificial neural network and physically based models for estimating of reference evapotranspiration in greenhouse. Australian Journal of Basic and Applied Sciences, v.3, p. 2528-2535, 2009.

ALLEN, R. G.; PEREIRA, L. S.; RAES, D.; SMITH, M. Guidelines for computing crop water requirements. Rome: FAO, 1998. (FAO Irrigation and Drainage Paper, 56)

ALVES SOBRINHO, T.; RODRIGUES, D. B. B.; OLIVEIRA, P. T. S. DE; REBUCCI, L. C. S.; PERTUSSATTI, C. A. Estimativa da evapotranspiração de referência através de redes neurais artificiais. Revista Brasileira de Meteorologia, v.26, p. 197-203, 2011.

ALVES SOBRINHO, T.; RODRIGUES, D. B. B.; OLIVEIRA, P. T. S.; REBUCCI, L. C. S.; PERTUSSATTI, C. A. Estimativa da evapotranspiração de referência através de redes neurais artificiais. Revista Brasileira de Meteorologia, v.26, p. 197-203, 2011.

BLANEY, H. F.; CRIDDLE, W. D. Determing water requirements in irrigated areas from climatological and irrigation data. Washington: Soil Conservation Service, 1950. (Technical Publication, 96).

DOORENBOS, J.; PRUITT, W. O. Guidelines for predicting crop water requirements, Roma: FAO, 1984. (FAO Irrigation and Drainage Paper, 24).

GAL, Y., GHAHRAMANI, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. Proceedings of the 33nd International Conference on Machine Learning, 2016, New York City, 2016, pp. 1050-1059. 2016.

HAGAN, M.T.; MENHA, M. Training feedforward networks with the Marquardt Algorithm, IEEE Transactions on Neural Networks, v. 5, n.6, p. 989-993, 1994.

HARGREAVES, G. H.; SAMANI, Z. A. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, v. 1, n. 2, p. 96-99, 1985.

HAYKIN, S. Neural Network - A Comprehensive Foundation. New Jersey: Prentice-Hall, p.23-57, 1999.

KENDALL, A., GAL, Y. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? Advances in Neural Information Processing Systems, v. 30, pp. 5574-5584. Curran Associates, Inc. 2017.

KUMAR, M.; RAGHUWANSHI, N. S.; SINGH, R.; WALLENDER, W. W.; PRUITT, W. O. Estimating evapotranspiration using artificial neural network. Journal of Irrigation and Drainage Engineering, v.128, n.4, p. 224-233, 2002.

MAKKINK, G. F. Ekzamento de la formulo de Penman. Netherlands Journal of Agricultural Science, v. 5, n. 1, p. 290-305, 1957.

PEREIRA, A. R.; ANGELOCCI, L. R.; SENTELHAS, P. C. Agrometeorologia: Fundamentos e aplicações práticas. Guaíba: Agropecuária, 2002. 478p.

PRIESTLEY, C. H. B.; TAYLOR, R. J. On the assessment of surface heat flux and evapotranspiration using large scale parameters. Monthly Weather Review, v. 100, n. 1, p. 81-92, 1972.

RAHIMIKHOOB, A. Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran. Theoretical and Applied Climatology, v.101, p. 83- 90, 2010.

TICKNOR, J. L. A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, v. 40, n. 14, p. 5501-5506, 2013.

TURC, L. Evaluation des besoins en eau d'irrigation, l'evapotranspiration potentielle. Annals of Agronomy, v. 12, n. 1, p. 13-49, 1961.

WANG, L. et al. Pan evaporation modeling using six different heuristic computing methods in different climates of China. Journal of Hydrology, v. 544, p. 407-427, 2017.

ZANETTI, S. S.; SOUSA, E. F.; OLIVEIRA, V. P. S.; ALMEIDA, F. T.; BERNARDO, S. Estimating evapotranspiration using artificial neural network and minimum climatological data. Journal of Irrigation and Drainage Engineering, v.133, p. 83-89, 2007.

Downloads

Published

2020-03-31

How to Cite

Silva, C. de O. F., Teixeira, A. H. de C., & Manzione, R. L. (2020). BAYESIAN REGULARIZED NEURAL NETWORKS APPROACH AND UNCERTAINTY ANALYSIS FOR REFERENCE EVAPOTRANSPIRATION MODELING ON SEMIARID AGROECOSYSTEMS. Revista Brasileira De Engenharia De Biossistemas, 14(1), 73–84. https://doi.org/10.18011/bioeng2020v14n1p73-84

Issue

Section

Regular Section