ARTIFICIAL VISION FOR NUTRITIONAL DIAGNOSIS OF CORN GROWN WITH CALCIUM SILICATE AND MAGNESIUM IN PONDERAL DOSES AND HIGH DILUTIONS

Authors

  • M. M. Baesso
  • T. M. G. Aprilanti
  • A. J. Modolo
  • F. Rossi

DOI:

https://doi.org/10.18011/bioeng2020v14n1p36-47

Keywords:

precision agriculture, digital image processing, statistical classifier, homeopathy

Abstract

The hypothesis of the present work was that an artificial vision system was able to characterize the nutritional deficiency in the corn leaf, under homeopathic preparations, using the spectral properties of the culture. The work, carried out at the Faculty of Zootechnics and Food Engineering (FZEA) - University of São Paulo (USP), in Pirassununga / SP / Brazil studied the nutritional behavior of corn (Zeamays L.), hybrid Biogene 7049H. The experimental design used was a randomized block with 6 treatments: calcium and magnesium silicate, in the following dynamizations CH6 (dilution at 10-12), CH9 (dilution at 10-18), CH12 (dilution at 10-24) and CH15 (dilution to 10-30), a control treatment without application of silicon and a treatment with calcium and magnesium silicate at a dose of 1 t ha-1, with 10 repetitions. The corn leaves were digitized by "scanner" and the image processing was performed by the MATLAB® program. Three different sizes of image blocks were tested 9 x 9; 20 x 20 and 40 x 40 "pixels". The best results were achieved by the blocks of 40 x 40 "pixels".

Downloads

Download data is not yet available.

References

ANVISA - Agencia Nacional de Vigilância Sanitária: FARMACOPEIA Homeopática brasileira. Brasília. 364p, 2011.

CONAB – Companhia Nacional de Abastecimento: Acompanhamento da Safra Brasileira de Grãos. Brasilia, Conab, 127p, 2018.

CONGALTON, R. G.; A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing thematic accuracy assessment, v. 37 (1): 35-46, 1991.

GONZALEZ, R. C.; WOODS, R. E.; (1992) Digital image processing. Massachusetts, Addison-Wesley Publishing Company. 716p, 1992.

KHATTREE, R.; MAIK, D. N.; Multivariate data reduction and discrimination with SAS software. Cary, SAS Institute Inc. 584p, 2000.

LE REST K.; PINAUD D.; MONESTIEZ P.; CHADOEUF J.; B.; Spatial leave-one-out cross-validation forvariable selection in the presence ofspatial autocorrelation. Global Ecology and Biogeography, v. 23 (7): 811-820, 2014.

MIRANDA, P.S.; MORAES, T. R.; SANTOS, J. R. E.; CARVALHO, F. D.; VIANA, J. P.; PÉREZ-MALUF, R.; Aplicação de silício na cultura do milho. Revista Ciência Agroambiental, v. 16 (1): 2-6, 2018.

ROMUALDO, L. M.; LUZ, P. H. C.; BAESSO, M. M.; DEVECHIO, F. F. S.; BET, J. A.; Spectral indexes for identification of nitrogen deficiency in maize. Revista Ciência Agronômica, v. 49 (2): 183-191, 2018.

ROMUALDO, L. M.; LUZ, P. H. C.; DEVECHIO, F. F.S.; MARIN, M. A.; ZÚNIGA, A. M. G.; BRUNO, O. M.; HERLING, V. R.; Use of artificial vision techniques for diagnostic of nitrogen nutritional status in maize plants. Computers and Electronics in Agriculture, v. 104 (2): 63-70, 2014.

Published

2020-03-31

How to Cite

Baesso, M. M., Aprilanti, T. M. G., Modolo, A. J., & Rossi, F. (2020). ARTIFICIAL VISION FOR NUTRITIONAL DIAGNOSIS OF CORN GROWN WITH CALCIUM SILICATE AND MAGNESIUM IN PONDERAL DOSES AND HIGH DILUTIONS. Revista Brasileira De Engenharia De Biossistemas, 14(1), 36–47. https://doi.org/10.18011/bioeng2020v14n1p36-47

Issue

Section

Regular Section