ARTMAP-FUZZY: INTELLIGENT SYSTEM APPLIED TO FAULT DETECTION IN A TRACTOR

Authors

  • F. D. G. da Silva
  • F. R. Chavarette
  • M. L. M. Lopes

DOI:

https://doi.org/10.18011/bioeng2016v10n4p358-367

Keywords:

artificial neural network, ARTMAP–Fuzzy, failure detection, tractor

Abstract

This paper presents the development of an intelligent system that, by an artificial neural network, works in the detection of structural flaws in a tractor. It was simulated a tractor by means of a numerical model built by differential equations, which generates data as to change the speed and the distance between the protrusions on the ground. For the analysis, identification and characterization of computationally simulated data was encoded a system that utilizes concepts of Adaptive Resonance Theory present in the ARTMAP-fuzzy neural network. The main objective of this system is to inspect the tractor structure contributing to its better conservation, indicating whether it is in normal conditions or structural failure situation. The results obtained in the application of neural network to the specified problem proved to be efficient and accurate.

Downloads

Download data is not yet available.

References

CARPENTER, G. A. et al. Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks, v. 3, n. 5, p. 698-713, set 1992.

CARPENTER, G. A., GROSSBERG, S., A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, v. 37, n. 1, p. 54-115, 1987.

HALL, S. R., The effective management and use of structural health data. International Workshop on Structural Health Monitoring, p. 265-275, 1999.

KHOURY, J. K. J., et al. Modelagem da estabilidade de tratores agrícolas de pneus. Pesq. Agropec. Bras., Brasília, v. 39, n. 5, p. 459-468, mai. 2004.

LIMA, F. P. A., et al. ARTMAP-Fuzzy artificial neural network applied to the monitoring and fault identification in structural. Lecture Notes in Information Technology, Korea, v. 39, p. 3-9, 2013.

LIMA, F. P. A. et al., Diagnóstico de falhas em estruturas mecânicas utilizando rede neural artificial ARTMAP-Fuzzy. Congresso de Matemática Aplicada e Computacional - CMAC, Curitiba, 1, 2014. 1-6.

LOPES, M. L. M., Desenvolvimento de redes neurais para previsão de cargas elétricas de sistemas de energia elétrica, 2005. 149. Tese (Doutorado em Engenharia Elétrica) - Faculdade de Engenharia Elétrica, Universidade Estadual Paulista - UNESP, Ilha Solteira, 2005.

MARTINS, J. R. D., Detecção e classificação de curtos-circuitos em sistemas de distribuição usando rede neural artificial ARTMAP nebulosa, 2010. 84 f. Dissertação (Mestrado em Engenharia Elétrica) - Faculdade de Engenharia Elétrica, Universidade Estadual Paulista - UNESP, Ilha Solteira, 2010.

MATLAB (R2013a). 8.1 Version, Mathworks Company

SAKAI, K., Nonlinear dynamics and chaos in agricultural systems. 1ª. ed. Amsterdam: Elsevier Science B.V., 2001.

TONELLI-NETO, M. S., Formulação do controle preventivo em sistemas de distribuição de energia elétrica baseada na lógica fuzzy e redes neurais. 2012. 137. Dissertação (Mestrado em Engenharia Elétrica) - Faculdade de Engenharia Elétrica, Universidade Estadual Paulista - UNESP, Ilha Solteira, 2012.

Published

2016-12-27

How to Cite

da Silva, F. D. G., Chavarette, F. R., & Lopes, M. L. M. (2016). ARTMAP-FUZZY: INTELLIGENT SYSTEM APPLIED TO FAULT DETECTION IN A TRACTOR. Revista Brasileira De Engenharia De Biossistemas, 10(4), 358–367. https://doi.org/10.18011/bioeng2016v10n4p358-367

Issue

Section

Regular Section