• L. D. Mendes
  • J. D. Bresolin
  • O. B. G. Assis
  • D. de Britto



chitosan, natural antifungal, blue mold, biopolymers, P. expansum


Chitosan of medium molar weight (400,000 gmol-1) from commercial origin and its quaternized water-soluble derivative N,N,N-trimethylchitosan were evaluated in laboratorial scale, in in vitro analyses, as inhibitors agents of Penicillium expansum growth. Formulations with polymer concentrations of 0.1; 1.0; 5.0 and 10.0 gL-1 were prepared and added to PDA solid and aqueous culture medium. The fungus strain was collected from decay fruits, harvested and inoculated in the medium with the polymers. Measurement of colony size growth (in solid medium) and germinated spore's counting (in liquid medium using a Neubauer cell) indicated that both polymers act efficiently in reducing fungal infestation, nevertheless in distinct ways. The chitosan showed high efficiency in liquid medium while the derivative was more effective in solid medium, both at low concentrations (0.1 e 1.0 gL-1). The results were discussed based on chitosan accepted antimicrobial mechanisms, aiming potential topic applications on fruits in postharvest conditions.


Download data is not yet available.


ALBURQUENQUE, C.; BUCAREY, S.A.; NEIRA-CARRILLO, A., URZÚA, B.; HERMOSILLA, G.; TAPIA C.V. Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp. Medical Mycology. v.48(8), p.1018-1023, 2010.

BADAWY, M.E.I.; RABEA, E.I. A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection. International Journal of Carbohydrate Chemistry, v.2011(Article ID 460381), 29p., 2011.

BARKA, E.A.; EULLAFFROY, P.; CLÉMENT, C.; VERNET, G. Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, v.22(8), p.608-614, 2004.

BENHAMOU, H.; LAFONTAINE, P.J.; NICOLE, M. Induction of systemic resistance to Fusarium crown and root rot tomato plants by seed treatment with chitosan. Phytopathology, v.84(12), p.1432-1444, 1994.

BLUM, L.E.B; AMARANTE, C.V.T.; VALDEBENITO-SANHUEZA, R.M.; GUIMARÃES, L.S.; DEZANET, A.; HACK NETO, P. Cryptococcus laurentii aplicado em pós-colheita reduz podridões em maçãs. Fitopatologia Brasileira, v.29(4), p. 433-436, 2004.

BLUM, L.E.B.; AMARANTE, C.V.T.; DEZANET, A.; LIMA, E.B.; NETO, P.H.; ÁVILA, R.D.; SIEGA, V. Fosfitos aplicados em pós-colheita reduzem o mofo-azul em maçãs 'Fuji' e 'Gala'. Revista Brasileira de Fruticultura, v.29(2), p. 265-268, 2007.

BRITTO, D.; ASSIS, O.B.G. A new method for obtaining of quaternary salt of chitosan. Carbohydrate Polymers. v.69(2), p.305-310, 2007.

BRITTO, D.; SANTOS, M.F.; ASSIS, O.B.G. Evaluation of chitosans with different degrees of acetylation as fungicide coating on cut apples. Alimentos e Nutrição, v.23(1), p. 16-21, 2012.

EL GHAOUTH, A.; PONNAMPALAM, R.; CASTAIGNE, F.; ARUL, J. Chitosan Coating to Extend the Storage Life of Tomatoes. HortScience, v.27(9), p.1016-1018, 1992.

FDA - US Food and Drug Administration. Center for food safety and applied Nutrition. GRAS notification 2001. Available at: ucm266601.pdf. Acesso em 29.Jan.2016.

FREITAS, R.A.; DRENSKI, M.F.; ALB, A.M.; REED, W.F. Characterization of stability, aggregation, and equilibrium properties of modified natural products; The case of carboxymethylated chitosans. Materials Science and Engineering C., v.30(1), p.34-41, 2010.

GABRIEL, G.J., MAEGERLEIN, J.A., NELSON, C.F., DABKOWSKI, J.M., EREN, T., NÃœSSLEIN, K.;TEW, G.N. Comparison of facially amphiphilic versus segregated monomers in the design of antibacterial copolymers. Chemistry – A European Journal, v.15(2), p.433-439, 2009.

GOY, R.C.; BRITTO D.; ASSIS O.B.G. A review of the antimicrobial activity of chitosan. Polímeros: Ciência e Tecnologia, v.19(3), p.241-247. 2009.

GOY, R.C.; ASSIS, O.B.G. Antimicrobial analysis of films processed from chitosan and n,n,n-trimethylchitosan. Brazilian Journal of Chemical Engineering. v.31(3), p.643-648, 2014.

GOY, R.C.; MORAIS, C.T.B.; ASSIS, O.B.G. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia, v.26(1), p. 122-127, 2016.

HASSAN, R.; EL-KADI, S.; SAND, M. Effect of some organic acids on some fungal growth and their toxins production. International Journal of Advances in Biology, v.2(1), p.1-11, 2015.

HERNÁNDEZ-LAUZARDO, A.N.; BAUTISTA-BAÑOS, S.; VELÁZQUEZ-DEL VALLE, M.G.; MÉNDEZ-MONTEALVO, M.G.; SÁNCHEZ-RIVERA, M.M.; BELLO-PÉREZ, L.A. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Carbohydrate Polymers. v.73(4), p.541–547, 2008.

LUCARINI, A.C.; SILVA, L.A. da; BIANCHI, R.A.C. Um sistema para contagem semiautomática de microorganismos. Revista Pesquisa e Tecnologia FEI, n.26, p.36-40, 2004.

MANIVASAGAN, P.; SENTHILKUMAR, K.; VENKATESON, J., KIM, S-E. Biological applications of chitin, chitosan, oligosaccharides and their derivatives. In: Chitin and Chitosan Derivatives: Advances in Drug Discovery and Developments. Se-Kwon Kim Editor, CRP Press, Boca Raton, FL., Capítulo 13, pp. 243-260. 2014.

MUZZARELLI, R.A.A.; MUZZARELLI, C.; TARSI, R.; MILIANI, M.; GABBANELLI, F.; CARTOLARI, M. Fungistatic Activity of Modified Chitosans against Saprolegnia parasítica. Biomacromolecules, v.2(1), p.165-169, 2001.

NARAYANASAMY, P. Postharvest Pathogens and Disease Management. Wiley-Interscience Inc. Hoboken, N. Jersey. 1st ed. 2005 ‎, 592p.

OLIVEIRA JR, E.N.; EL GUEDDARI, N.E.; MOERSCHBACHER, B.M.; FRANCO, T.T. Growth rate inhibition of phytopathogenic fungi by characterized chitosans. Brazilian Journal of Microbiology, v.43(2), p.800-809, 2012.

OSÓRIO, G.T.; OLIVEIRA, B.S.; DI PIERO, R.M. Efeito de agentes fumigantes sobre o bolor azul e o mofo cinzento em frutos de maçã. Tropical Plant Pathology, v.38(1), p.63-67, 2013.

PALERMO, E.F.;KURODA, K. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Applied Microbiology Biotechnology, v.87(6), p.1605–1615, 2010.

QIU, M.; WU, C.; REN, G.; LIANG, X.; WANG, X.; HUANG, J. Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus. Food Chemistry, v.155, p.105–111, 2014.

RABEA, E.I.; BADAWY, M.E.-T.; STEVENS, C.V.; SMAGGHE, G.; STEURBAUT, W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules, v.4(6), p.1457-1465, 2003.

ROCHA NETO, A.C.; DI PIERO, R.M. Controle do bolor azul em frutos de maçã imersos em solução de ácido salicílico. Bioscience Journal, v.29(4), p.884-891, 2013.

SALOMÃO, B.C.M.; MULLER, C.; AMPARO, H.C.; ARAGÃO, G.M.F. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive. Brazilian Journal of Microbiology, v.45(1), p.49-58, 2014.

SATTOLO, N.M.S.; BRITTO, D.; ASSIS, O.B.G. Quitosana como fungicida em madeiras Pinus sp. Empregadas na confecção de caixas "K". Brazilian Journal of Food Technology, v.13(2), p.128-132, 2010.

SZYMAŃSKA, E.; WINNICKA, K. Stability of chitosan - A Challenge for pharmaceutical and biomedical applications. Marine Drugs, v.13(4), p.1819-1846, 2015.

WELKE, J.E.; HOELTZ, M.; DOTTORI, H.A.; NOLL, I.B. Ocorrência, aspectos toxicológicos, métodos analíticos e controle da patulina em alimentos. Ciência Rural, v.39(1), p. 300-308, 2009.

YU, T.; ZHENG, X.D. Indole-3-acetic acid enhances the biocontrol of Penicillium expansum and Botrytis cinerea on pear fruit by Cryptococcus laurentii. FEMS, v.7(3), p.459–464, 2007.

YU, T.; LI, H.Y.; ZHENG, X.D. Synergistic effect of chitosan and Cryptococcus laurentii on inhibition of Penicillium expansum infections. International Journal of Food Microbiology, v.114(3), p. 261-266, 2007.



How to Cite

Mendes, L. D., Bresolin, J. D., Assis, O. B. G., & de Britto, D. (2016). IN VITRO EVALUATION OF CHITOSAN AND ITS QUATERNIZED DERIVATIVE ON THE INHIBITION OF PENICILLIUM EXPANSUM GROWTH. Revista Brasileira De Engenharia De Biossistemas, 10(1), 116–128.



Regular Section