INDICATORS INNOVATIONS FOR PRODUCTIVITY GAINS OF MILK CHAIN

Authors

  • Oduvaldo Vendrametto UNIP UNIP/EP, R. Dr. Bacelar, 1212 – São Paulo, SP – Brasil.
  • Mario Mollo Neto UNIP UNIP/EP, R. Dr. Bacelar, 1212 – São Paulo, SP – Brasil.
  • Marcelo Tsugio Okano UNIP UNIP/EP, R. Dr. Bacelar, 1212 – São Paulo, SP – Brasil.

DOI:

https://doi.org/10.18011/bioeng2010v4n3p223-232

Keywords:

Agribusiness, milk production chain, Indicators for productivity improvement

Abstract

Milk production in Brazil is an important activity of the agricultural sector has a vital role in the process of economic and social development of the country. After half a century of stagnation, largely explained by strong government intervention in the dairy market, the chain of milk production begins in the early 90's to experience significant changes in all market segments, from production to consumption. The lack of vision and understanding of the supply chain as a whole, led to an asymmetric behavior, resulting in losses and instabilities throughout the production process, with justifiable dissatisfaction, especially small farmers. The aim of this study was to develop indicators of productive efficiency of dairy farms, associated with specific innovations to rank them on a table, or maturity model, with five levels depending on the stage of evolution of the technological contributions, inputs, skills and preparation of the flock of people. The results of analysis of data from field research pointed to the best practices that producers may have to evolve in the league table and to increase production efficiency.

Downloads

Download data is not yet available.

References

AHIRE, S. L. - TQM age versus quality: an empirical investigation. Production and Inventory Management Journal, first quarter, v. 37, n. 1, p. 18-23, 1996.

ALEXANDRE, J. W. C. & FERREIRA, J. J. A. - Um estudo empírico da aplicação da GQT nas empresas manufatureiras de portes médio e grande do estado do Ceará. Revista Produto & Produção, v. 5, n. 3, p. 33-38, 2001.

BADRI, M. A.; DONALD, D. & DONNA, D. A study of measuring the critical factors of quality management. International Journal of Quality & Reliability Management, v.12, n. 2, p. 36-53, 1995.

BURN, J. A revolutionary staged growth model of information systems planning. Proceedings of the Fifteenth International Conference on Information Systems, Vancouver, British Columbia, Canada, pp. 395-406, 1994.

CEPEA - ESALQ/USP Ano 16 - Nº 183 – Disponível em:

http://www.cepea.esalq.usp.br/leite/boletim/183/completo.pdf > Acesso em: Janeiro de 2010.

GEHLEN, I. Identidade e competitividade dos produtores familiares de leite/RS. Porto Alegre, 2000.

GIL, A. C. Como elaborar projetos de pesquisa. São Paulo. Editora Atlas, 2002.

GIL, A. C. Métodos e Técnicas de Pesquisa Social, São Paulo, Editora Atlas, 1987.

GOMES, A. T.; LEITE, J. L. B; O relacionamento na cadeia agroindustrial do leite para os novos tempos IN: GOMES, A T; LEITE, J L B; CARNEIRO, A V; O agronegócio do leite no Brasil – Juiz de Fora. EMBRAPA Gado de Corte. 2001.

GREINER, L. Evolution and Revolution as Organizations Grow. Harvard Business Review, nº 6, pp. 37-46, 1972.

IBGE. Pesquisa da Pecuária Municipal 2008. Rio de Janeiro, v.36. 2008.

JANK, M.S, GALAN, V.B. Competitividade do sistema agroindustrial do leite no Brasil. Rev. Inst. Lat. "Cândido Tostes", Juiz de Fora, v.53, p.72-83, 1998.

KING, W. E TEO, T. Integration between Business Planning and Information Systems Planning: Validating a Stage Hypothesis. Decision Sciences, Vol. 28, nº 2, pp. 279-307, 1997.

MOGEY, N. "So You Want to Use a Likert Scale?". Learning Technology Dissemination Initiative. Heriot-Watt University, 1999. Disponível em: <http://www.icbl.hw.ac.uk/ltdi/cookbook/info_likert_scale/index.html>. Acesso em: 30/04/2009.

SARAPH, J.V.; BENSON, P.G. & SCHOROEDER, R. G. "An instrument for measuring the critical factors of quality management". Decision Sciences, v. 20, n. 4, p. 810-29, 1989.

SMITH, G., MITCHELL, R. E SUMMER, E. Top level management priorities in different stages of the organizational life cycle. Academy of Management Journal, Vol. 28, nº 4, pp. 799-820, 1985.

TAMIMI, N.; GERSHON, M. & CURRALL, S. C. Assessing the psychometric properties of Deming's 14 principles. Quality Management Journal, spring, v. 2, n. 3, p. 38-52, 1995.

TERZIOVSKI, M.; SOHAL, A. & MOSS, S. Longitudinal Analysis of quality management practices in Australian organizations. Total Quality Management, v. 10, n. 6, p. 915-26, 1999.

YAMAGUCHI, L.C.T.; MARTINS, P.C.; CARNEIRO, A.V. Produção de leite nas três últimas décadas. In: GOMES, A.T.; LEITE, J.L.B.; CARNEIRO, A.V. (Eds.). O agronegócio do leite no Brasil. J uiz de Fora : Embrapa Gado de Leite, p.33-48; 2001.

ZIKMUND, W.G. ―Business Research Methods‖. 6th edition . The Dryden Press. Fort Worth. 2000.

Published

2010-11-25

How to Cite

Vendrametto, O., Mollo Neto, M., & Okano, M. T. (2010). INDICATORS INNOVATIONS FOR PRODUCTIVITY GAINS OF MILK CHAIN. Revista Brasileira De Engenharia De Biossistemas, 4(3), 223–232. https://doi.org/10.18011/bioeng2010v4n3p223-232

Issue

Section

Regular Section