Effect of glucose on germination performance in two soybean cultivars


  • Pedro Henrique Gorni Biosystems Engineering Department, São Paulo State University – UNESP, Tupã-SP, Brazil. https://orcid.org/0000-0002-3866-9215
  • Denis Wesley Polimeno Agronomic Engineering Department, Gammon University, Paraguaçu Paulista-SP, Brazil.




Glycine max, Phytohormone, Root protrusion index, vigor, germination speed index


Glucose promotes increases in physiological processes related to plant growth and induces cell division and can also act in seed germination. The present investigation has been carried out on the influence of various concentrations of glucose on the germination performance of soybeans seeds of cv. BMX and 66i68. Seeds of soybeans (Glycine max (L.) Merrill) were treated with three concentrations of the glucose (0.05, 0.10 and 0.20 mmol L-1), and a control with distilled water. Tests of seed germination and vigor were carried out: it was calculated the germination percentage (first and final counting), percentage of normal seedlings; and speed of germination, length of the primary root and the aerial part of seedlings were recorded. The experiment was arranged in a completely randomized design with three treatments and five repetitions depending on the test. Increasing doses of the plant growth regulator influence the germination and can increase the speed of germination. The use of glucose in the treatment of soybean seeds, increases the rate of germination and emergence speed, growth of the root system and medium of seedlings. Soybean cultivar BMX seeds showed an increase in physiological performance with increasing glucose dosage.


Download data is not yet available.


Ali, W., Ahmad, M.M., İftakhar, F., Qureshi, M., & Ceyhan, A. (2020). Nutritive potentials of Soybean and its significance for humans health and animal production: A Review. Eurasian Journal of Food Science and Technology, 4(1), 41-53.

Baenas, N., Fusari, C., Moreno, D.A., Valero, D., & García-Viguera, C. (2019). Biostimulation of bioactive compounds in radish sprouts (Raphanus sativus ‘Rambo’) by priming seeds and spray treatments with elicitors. Acta Horticulturae, 1256, 659-663. https://doi.org/10.17660/ActaHortic.2019.1256.94 DOI: https://doi.org/10.17660/ActaHortic.2019.1256.94

Brasil. Ministério da Agricultura e Reforma Agrária. Regras para análise de sementes. Brasília: SNDA/ DNDV/CLAV, 2009. 399p.

Colli, S., Purgato, E. (2012). Etileno. In: Kerbay GB. Fisiologia vegetal. Rio de Janeiro: Guanabara Koogan, pp. 271-295.

Companhia Nacional de Abastecimento – Conab. 2020. Acompanhamento da safra brasileira grãos, v. 7 – safra 2019/20 – Décimo primeiro levantamento, Brasília, pp: 1-62. Disponível em: https://www.conab.gov.br/info-agro/safras/graos

Coutinho, M.J.F., Carneiro, M.S.S., Edvan, R.L., Santiago, F.E.M., & Albuquerque, D.R. (2015). Características morfogênicas, estruturais e produtivas de capim-buffel sob diferentes turnos de rega. Pesquisa Agropecuária Tropical, 45(2): 216-224. https://doi.org/10.1590/1983-40632015v4531361 DOI: https://doi.org/10.1590/1983-40632015v4531361

González-Hernández, A.I., Scalschi, L., García-Agustín, P., & Camañes, G. (2020) Exogenous carbon compounds modulate tomato root development. Plants 9(7):837. https://doi.org/10.3390/plants9070837. DOI: https://doi.org/10.3390/plants9070837

Gorni, P.H., Pacheco, A.C., Lima Moro, A., Silva, J.F.A., Moreli, R.R., de Miranda, G.R., Pelegrini, J.M., Spera, K.D., Bronzel Jr, J.L., & Silva, R.M.G. (2020). Salicylic acid foliar application increases biomass, nutrient assimilation, primary metabolites and essential oil content in Achillea millefolium L. Scientia Horticulturae 270:109436. https://doi.org/10.1016/j.scienta.2020.109436. DOI: https://doi.org/10.1016/j.scienta.2020.109436

Hosseini, M.S., Zahedi, S.M., Hoveizeh, N.F., Li, L., Rafiee, M., & Farooq, M. (2020). Improving seed germination and seedling growth of guava under heat and osmotic stresses by chemical and hormonal seed treatments. Bragantia, 79: 512-524. https://doi.org/10.1590/1678-4499.20200155. DOI: https://doi.org/10.1590/1678-4499.20200155

Hu, M., Shi, Z., Zhang, Z., Zhang, Y., & Li, H. (2012). Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regulation, 68(2):177-188. https://doi.org/10.1007/s10725-012-9705-3. DOI: https://doi.org/10.1007/s10725-012-9705-3

Huang, Y.W., Zhou, Z.Q., Yang, H.X., Wei, C.X., Wan, Y.Y., Wang, X.J., & Bai, J.G. (2015). Glucose application protects chloroplast ultrastructure in heat-stressed cucumber leaves through modifying antioxidant enzyme activity. Biologia Plantarum, 59(1): 131-138. https://doi.org/10.1007/s10535-014-0470-1 DOI: https://doi.org/10.1007/s10535-014-0470-1

Kim, M.Y., Lee, B.W., Kim, M.H., Kim, H.J., Lee, J.Y., Kang, M.S., Koo, B.C., & Lee, Y.Y. (2020). Effects of Elicitor Treatment on Antioxidant Compound and Activity of Germinated Rough Rice (Oryza sativa L.) Depending on Cultivars. Journal of the Korean Society of Food Science and Nutrition 49(6): 638-645. DOI: https://doi.org/10.3746/jkfn.2020.49.6.638

Kushwah, S., & Laxmi, A. (2014). The interaction between glucose and cytokinin signal transduction pathway in Arabidopsis thaliana. Plant, Cell & Environment, 37: 235–253. https://doi.org/10.1111/pce.12149 DOI: https://doi.org/10.1111/pce.12149

Maguire, J.D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2:176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x. DOI: https://doi.org/10.2135/cropsci1962.0011183X000200020033x

Menezes, T.D., Rodrigues, F.A., Asmar, A.S., & Pasqual, M. (2010). Sacarose e GA3 na germinação de sementes e no desenvolvimento in vitro de plântulas de goiabeira ‘Pedro Santo’. Plant Cell Culture & Micropropagation, 6(2): 69-75.

Nakagawa, J. (1999). Teste de vigor baseado no desempenho das plântulas. In: Krzyzamowski, F. C.; Vieira, R. D.; França-Neto, J. B. (Eds.) Vigor de sementes: conceito e testes. 1999 Londrina, Abrates. p.1-24.

Pereira, J.E.S., Maciel, T.M.S., Costa, F.H.D.S., & Pereira, M.A.A. (2006). Germinação in vitro de embriões zigóticos de murmuru (Astrocaryum ulei). Ciência e Agrotecnologia, 30: 251-256. https://doi.org/10.1590/S1413-70542006000200009. DOI: https://doi.org/10.1590/S1413-70542006000200009

Rezende, J.C., Ferreira, E.A., Pasqual, M., Villa, F., & Santos, F.C. (2009). Desenvolvimento in vitro de Cattleya loddigesii sp.: adição de reguladores de crescimento e sacarose. Agrarian, 2(3): 99-114.

Ribeiro, M.N.O., Pasqual, M., Villa, F., & Cavallari, L.L. (2009). Desenvolvimento in vitro de copo de leite: efeito das concentrações de sacarose e de ácido giberélico. Semina: Ciências Agrárias, 30(3): 575-580. DOI: https://doi.org/10.5433/1679-0359.2009v30n3p575

Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology, 57: 675–709. https://doi.org/10.1146/annurev.arplant.57.032905.105441. DOI: https://doi.org/10.1146/annurev.arplant.57.032905.105441

Sami, F., Siddiqui, H., Alam, P., & Hayat, S. (2021). Glucose-induced response on photosynthetic efficiency, ROS homeostasis, and antioxidative defense system in maintaining carbohydrate and ion metabolism in Indian mustard (Brassica juncea L.) under salt-mediated oxidative stress. Protoplasma, 258(3), 601-620. https://doi.org/10.1007/s00709-020-01600-2. DOI: https://doi.org/10.1007/s00709-020-01600-2

Siddiqui, H., Sami, F., & Hayat, S. (2020). Glucose: Sweet or bitter effects in plants-a review on current and future perspective. Carbohydrate Research, 487:107884. https://doi.org/10.1016/j.carres.2019.107884. DOI: https://doi.org/10.1016/j.carres.2019.107884

Vishal, B., & Kumar, P.P. (2018). Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Frontiers in Plant Science, 9, 838. https://doi.org/10.3389/fpls.2018.00838. DOI: https://doi.org/10.3389/fpls.2018.00838

Wang, L.H., Li, G.L., Wei, S., Li, L.J., Zuo, S.Y., Liu, X., Gu, W.R., & Li, J. (2019). Effects of exogenous glucose and sucrose on photosynthesis in triticale seedlings under salt stress. Photosynthetica, 57(1): 286–294. https://doi.org/10.32615/ps.2019.030. DOI: https://doi.org/10.32615/ps.2019.030

Wang, M., Le Gourrierec, J., Jiao, F., Demotes-Mainard, S., Perez-Garcia, M.D., Ogé, L., Hamama, L., Crespel, L., Bertheloot, J., Chen, J., Grappin, P., & Sakr, S. (2021). Convergence and divergence of sugar and cytokinin signaling in plant development. International Journal of Molecular Sciences, 22(3): 1282. https://doi.org/10.3390/ijms22031282. DOI: https://doi.org/10.3390/ijms22031282

Yusuf, M., Almehrzi, A.S.S., Alnajjar, A.J.N., Alam, P., Elsayed, N., Khalil, R., & Hayat, S. (2021). Glucose modulates copper induced changes in photosynthesis, ion uptake, antioxidants and proline in Cucumis sativus plants. Carbohydrate Research, 501:108271. https://doi.org/10.1016/j.carres.2021.108271. DOI: https://doi.org/10.1016/j.carres.2021.108271

Zahid, M., Iqbal, N., Muhammad, S., Faisal, S., Mahboob, W., Hussain, M., Uddin Khan, Z. (2018). Efficacy offexogenous applications of glucose in improving wheat crop (Triticum aestivum L.) performance under drought stress. The Pakistan Journal of Agricultural Sciences, 31(3): 264–273. https://doi.org/10.17582/journal.pjar/20 DOI: https://doi.org/10.17582/journal.pjar/2018/




How to Cite

Gorni, P. H., & Polimeno, D. W. (2023). Effect of glucose on germination performance in two soybean cultivars. Revista Brasileira De Engenharia De Biossistemas, 17. https://doi.org/10.18011/bioeng.2023.v17.1195



Regular Section