Bioprocess for mass production and feed utilization of Azolla pinnata in aquaculture ponds: a perspective of bioeconomy and eco-friendly technology for small farms
DOI:
https://doi.org/10.18011/bioeng.2022.v16.1129Keywords:
bioeconomy, circular economy, reuse effluents, sustainable aquacultureAbstract
Aquatic plants have a high potential to be used as eco-friendly technology in fish farming effluent treatment systems. However, there is still a reduced use of the vegetable biomass produced in these treatment systems. Thus, the aim of this study was to develop an alternative feed with the aquatic plant Azolla pinnata to take advantage of plant biomass, reusing the plant to develop a new product and promote a circular economy. A. pinnata was implemented in decantation pond that receives effluents from fish farming. Samples were collected weekly at four times (0, 7, 14, and 21 days). Posteriorly, A. pinnata was processed to obtain the meal. Azolla meal was offered along with three commercial feed (24%, 28% and 32% of the crude protein) in an experiment to evaluate the zootechnical performance of tilapia in small tanks. The results indicated that A. pinnata was efficient to retention of phosphorus and nitrogen after seven days. In the experiment with animals, the treatment using commercial feed with 28% of the crude protein + Azolla showed the best efficiency rates for using the diet. Thus, the use of the A. pinnata meal was a viable alternative in the search for sustainable products to promote a bioeconomy in the small fish farms.Downloads
References
AOAC (2000) ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. Official Methods of Analysis of the Association of Official Analytical Chemists (16th ed.) Arlington.
Alalade, O. A., & Iyayi, E. A. (2006). Chemical composition and the feeding value of Azolla (Azolla pinnata) meal for egg-type chicks. International Journal of Poultry Science, 5(2), 137-141. DOI: https://doi.org/10.3923/ijps.2006.137.141
Ansari, A. A., Naeem, M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, 46(4), 371-376. https://doi.org/10.1016/j.ejar.2020.03.002 DOI: https://doi.org/10.1016/j.ejar.2020.03.002
Appenroth, K. J., Sree, K. S., Böhm, V., Hammann, S., Vetter, W., Leiterer, M., & Jahreis, G. (2017). Nutritional value of duckweeds (Lemnaceae) as human food. Food chemistry, 217, 266-273. https://doi.org/10.1016/j.foodchem.2016.08.116 DOI: https://doi.org/10.1016/j.foodchem.2016.08.116
Arora, A., & Singh, P. K. (2003). Comparison of biomass productivity and nitrogen fixing potential of Azolla spp. Biomass and Bioenergy, 24(3), 175-178. https://doi.org/10.1016/S0961-9534(02)00133-2 DOI: https://doi.org/10.1016/S0961-9534(02)00133-2
Baccarin, A. E., & Camargo, A. F. M. (2005). Characterization and evaluation of the impact of feed management on the effluents of Nile tilapia (Oreochromis niloticus) culture. Brazilian Archives of Biology and Technology, 48(1), 81-90. https://doi.org/10.1590/S1516-89132005000100012 DOI: https://doi.org/10.1590/S1516-89132005000100012
Basak, B., Pramanik, M. A. H., Rahman, M. S., Tarafdar, S. U., & Roy, B. C. (2002). Azolla (Azolla pinnata) as a feed ingredient in broiler ration. International Journal of Poultry Science, 1(1), 29-34. DOI: https://doi.org/10.3923/ijps.2002.29.34
Bennicelli, R., Stępniewska, Z., Banach, A., Szajnocha, K., & Ostrowski, J. (2004). The ability of Azolla caroliniana to remove heavy metals (Hg (II), Cr (III), Cr (VI)) from municipal waste water. Chemosphere, 55(1), 141-146. https://doi.org/10.1016/j.chemosphere.2003.11.015 DOI: https://doi.org/10.1016/j.chemosphere.2003.11.015
Bi, R., Zhou, C., Jia, Y., Wang, S., Li, P., Reichwaldt, E. S., & Liu, W. (2019). Giving waterbodies the treatment they need: a critical review of the application of constructed floating wetlands. Journal of environmental management, 238, 484-498. https://doi.org/10.1016/j.jenvman.2019.02.064 DOI: https://doi.org/10.1016/j.jenvman.2019.02.064
Bohnes, F. A., & Laurent, A. (2020). Environmental impacts of existing and future aquaculture production: Comparison of technologies and feed options in Singapore. Aquaculture, 532, 736001. https://doi.org/10.1016/j.aquaculture.2020.736001 DOI: https://doi.org/10.1016/j.aquaculture.2020.736001
Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243. DOI: https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
Boyd, C.E., D'Abramo, L.R., Glencross, B.D., Huyben, D.C., Juarez, L.M., Lockwood, G.S., McNevin, A.A., Tacon, A.G.J., Teletchea, F., Tomasso Jr, J.R., Tucker, C.S., Valenti, W.C. 2020. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquacult. Soc. 51, 578–633. DOI: 10.1111/jwas.12714. DOI: https://doi.org/10.1111/jwas.12714
Bueno, G.W., Ostrensky, A., Canzi, C., Matos, F.T., Roubach, R. 2019. Implementation of aquaculture parks in Federal Government waters in Brazil. Rev. Aquacult. 7, 1–12. https://doi.org/10.1111/raq.12045 DOI: https://doi.org/10.1111/raq.12045
Cao M., Song C., Jin Y., Liu L., Liu J., Xie H., & Wang, S. (2010). Synthesis of poly(γ-glutamic acid) and heterologous expression of pgsBCA genes. Journal of Molecular Catalysis B: Enzymatic, 67(1-2), 111-116. https://doi.org/10.1016/j.molcatb.2010.07.014 DOI: https://doi.org/10.1016/j.molcatb.2010.07.014
Cherryl, D. M., Prasad, R. M. V., JagadeeswaraRao, S., Jayalaxmi, P., & Srinivas Kumar, D. (2014). A study on the nutritive value of Azolla pinnata. Livestock Research International, 2(1), 13-15.
Fiogbe, E. D., Micha, J. C., & Van Hove, C. (2004). Use of a natural aquatic fern, Azolla microphylla, as a main component in food for the omnivorous–phytoplanktonophagous tilapia, Oreochromis niloticus L. Journal of Applied Ichthyology, 20(6), 517-520. DOI: https://doi.org/10.1111/j.1439-0426.2004.00562.x
Food And Agriculture Organization (FAO) (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome: FAO. 236p. https://doi.org/10.4060/cc0461en DOI: https://doi.org/10.4060/cc0461en
Forni, C., Chen, J., Tancioni, L., & Caiola, M. G. (2001). Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Water research, 35(6), 1592-1598. https://doi.org/10.1016/S0043-1354(00)00396-1 DOI: https://doi.org/10.1016/S0043-1354(00)00396-1
Henry-Silva, G. G., & Camargo, A. F. M. (2006). Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents. Scientia Agricola, 63(5), 433-438. DOI: https://doi.org/10.1590/S0103-90162006000500003
Kumar, V., Kumar, P., Singh, J., & Kumar, P. (2020). Potential of water fern (Azolla pinnata R. Br.) in phytoremediation of integrated industrial effluent of SIIDCUL, Haridwar, India: removal of physicochemical and heavy metal pollutants. International journal of phytoremediation, 22(4), 392-403. https://doi.org/10.1080/15226514.2019.1667950 DOI: https://doi.org/10.1080/15226514.2019.1667950
Magouz, F. I., Dawood, M. A., Salem, M. F., & Mohamed, A. A. (2020). The effects of fish feed supplemented with Azolla meal on the growth performance, digestive enzyme activity, and health condition of genetically-improved farmed tilapia (Oreochromis niloticus). Annals of Animal Science, 20(3), 1029-1045. https://doi.org/10.2478/aoas-2020-0016 DOI: https://doi.org/10.2478/aoas-2020-0016
Mengistu, S. B., Mulder, H. A., Benzie, J. A., & Komen, H. (2020). A systematic literature review of the major factors causing yield gap by affecting growth, feed conversion ratio and survival in Nile tilapia (Oreochromis niloticus). Reviews in Aquaculture, 12(2), 524-541. DOI: https://doi.org/10.1111/raq.12331
Milhazes-Cunha, H., & Otero, A. (2017). Valorization of aquaculture effluents with microalgae: the integrated multi-trophic aquaculture concept. Algal research, 24, 416-424. https://doi.org/10.1016/j.algal.2016.12.011 DOI: https://doi.org/10.1016/j.algal.2016.12.011
Mohd Nizam, N. U., Mohd Hanafiah, M., Mohd Noor, I., & Abd Karim, H. I. (2020). Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater. Applied Sciences, 10(8), 2712. https://doi.org/10.3390/app10082712 DOI: https://doi.org/10.3390/app10082712
Mounes, H. A. M., Mansour, E. G., & Ahmed, K. M. (2020). Effect of Azolla pinnata and Nannochloropsis oculata on growth performance and immunoresponse of Nile tilapia (Oreochromis niloticus) and its resistance to bacterial infection. Egyptian Journal for Aquaculture, 10(3), 43-62. DOI: https://doi.org/10.21608/eja.2020.38241.1030
Muvea, F. M., Ogendi, G. M., & Omondi, S. O. (2019). Nutrient removal efficiency by floating macrophytes; Lemna minor and Azolla pinnata in a constructed wetland. Global Journal of Environmental Science and Management, 5(4), 415-430.
Osti, J. A., Henares, M. N., & Camargo, A. F. (2018). The efficiency of free‐floating and emergent aquatic macrophytes in constructed wetlands for the treatment of a fishpond effluent. Aquaculture Research, 49(10), 3468-3476. https://doi.org/10.1111/are.13813 DOI: https://doi.org/10.1111/are.13813
Prasad, R. M. V., JagadeeswaraRao, S., Jayalaxmi, P., & Kumar, D. S. (2014). A study on the nutritive value of Azolla pinnata. Livestock Research International, 2, 13-15.
Pillai, P. K., Premalatha, S., & Rajamony, S. (2002). Azolla-A sustainable feed substitute for livestock. Leisa India, 4(1), 15-17.
Pizato, S., Kraieski, J., Sarmento, C., & Prentice, C. (2012). Evaluation of the technological quality presented for a canned Nile tilapia (Oreochromis niloticus). Ciências Agrárias, 33(2), 667-674. DOI: https://doi.org/10.5433/1679-0359.2012v33n2p667
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Rai, P. K. (2008). Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. International journal of phytoremediation, 10(5), 430-439. https://doi.org/10.1080/15226510802100606 DOI: https://doi.org/10.1080/15226510802100606
Redding, T., Todd, S., & Midlen, A. (1997). The treatment of aquaculture wastewaters—a botanical approach. Journal of Environmental Management, 50(3), 283-299. https://doi.org/10.1006/jema.1997.0112 DOI: https://doi.org/10.1006/jema.1997.0112
Roy, D. C., Pakhira, M. C., & Roy, M. (2016). Estimation of amino acids, minerals and other chemical compositions of Azolla. Advances in Life Sciences, 5(7), 2692-2696.
Souza, S. M. G., de Oliveira, D., dos Santos, C. V., Gomes, M. E. C., & Esteves, K. D. (2008). Growth and feed utilization by juvenile grass carp (Ctenopharyngodon idella) feed with Azolla filiculoides) with low lipid diet. Semina: Ciências Agrárias, 29(2), 459-464. DOI: https://doi.org/10.5433/1679-0359.2008v29n2p459
Toledo, J. J., & Penha, J. (2011). Performance of Azolla caroliniana Willd. and Salvinia auriculata Aubl. on fish farming effluent. Brazilian Journal of Biology, 71(1), 37-45. https://doi.org/10.1590/S1519-69842011000100007 DOI: https://doi.org/10.1590/S1519-69842011000100007
Turcios, A. E., & Papenbrock, J. (2014). Sustainable treatment of aquaculture effluents—what can we learn from the past for the future?. Sustainability, 6(2), 836-856. https://doi.org/10.3390/su6020836 DOI: https://doi.org/10.3390/su6020836
Upadhyay, A. R., & Tripathi, B. D. (2007). Principle and process of biofiltration of Cd, Cr, Co, Ni & Pb from tropical opencast coalmine effluent. Water, air, and soil pollution, 180(1), 213-223. DOI 10.1007/s11270-006-9264-1 DOI: https://doi.org/10.1007/s11270-006-9264-1
Vasconcelos, V. M., de Morais, E. R. C., Faustino, S. J. B., Hernandez, M. C. R., Gaudêncio, H. R. D. S. C., de Melo, R. R., & Junior, A. P. B. (2020). Floating aquatic macrophytes for the treatment of aquaculture effluents. Environmental Science and Pollution Research, 1-8. https://doi.org/10.1007/s11356-020-11308-8 DOI: https://doi.org/10.1007/s11356-020-11308-8
Valenti, W.C., Kimpara, J.M., Preto, B.L., Moraes-Valenti, P., 2018. Indicators of sustainability to assess aquaculture systems. Ecologic Indicator, 88, 402-413 https://doi.org/10.1016/j.ecolind.2017.12.068. DOI: https://doi.org/10.1016/j.ecolind.2017.12.068
Valenti, W.C.; Barros, H.P.; Moraes-Valenti, P.; Bueno, G.W.; Cavalli, R.O. 2021. Aquaculture in Brazil: past, present and future. Aquaculture Reports, V.19, p. 1-18, doi.org/10.1016/j.aqrep.2021.100611. DOI: https://doi.org/10.1016/j.aqrep.2021.100611
Zhao, L., Zheng, Y., Nicholaus, R., Lukwambe, B., Zhu, J., Yang, W., & Zheng, Z. (2019). Bioturbation by the razor clam Sinonovacula constricta affects benthic nutrient fluxes in aquaculture wastewater treatment ecosystems. Aquaculture Environment Interactions, 11, 87-96. https://doi.org/10.3354/aei00298 DOI: https://doi.org/10.3354/aei00298
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Brasileira de Engenharia de Biossistemas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
a) Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License that allows the sharing of the work with recognition of authorship and initial publication in this journal.
b) Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publish in an institutional repository or as a book chapter), with recognition of authorship and initial publication in this journal.