Gypsum-based composites reinforced with bamboo particles


  • Flávia Maria Silva Brito Graduate Program in Forest Sciences, Federal University of Espírito Santo, Jerônimo Monteiro, ES, Brazil
  • Bruna Lopes Alvarenga Department of Engineering, Federal University of Lavras, Lavras, MG, Brazil.
  • Laércio Mesquita Júnior Department of Engineering, Federal University of Lavras, Lavras, MG, Brazil.
  • Lourival Marin Mendes Department of Forest Science, Federal University of Lavras, Lavras, MG, Brazil
  • José Benedito Guimarães Júnior Department of Engineering, Federal University of Lavras, Lavras, MG, Brazil.



Biomass, Fiber reinforced gypsum, Physical properties, Mechanical properties, Chemical analysis


This study aimed to evaluate the quality of gypsum-based mineral composites reinforced with bamboo particles. The particles size was 1.68 mm and 0.841 mm. The density adopted for the composites was 0.80 g/cm³. The following weight replacement ratios were adopted: 0; 2.5; 5.0; 7.5 and 10.0%. The water/solid mass factor of the composite remained constant. For each treatment two slabs of composites were produced. Physical and mechanical properties were determined: humidity, apparent density, water absorption (2 and 24 hours), modulus of rupture, modulus of elasticity and compression. The results showed that the apparent density and moisture content of the composites were not influenced by the insertion of the bamboo particles, while the water absorption was significantly reduced. The addition of the bamboo reinforcement particles did not cause improvements in the MOR and MOE properties, but all the MOR values of the treatments reached the value established by EN 13279-2 (EN, 2004). Although all treatments have reached the minimum values stipulated by the standard for compressive strength, all values were reduced with the insertion of bamboo particles. In general, the Dendrocalamus giganteus can be used as reinforcement in gypsum composites, however new parameters should be tested, such as: particle size; increasing the proportions of particles, pre-treatment of particles, addition of other additives, such as superplasticizer to water to improve workability and even use more than one reinforcement to obtain composites with improved properties.



Download data is not yet available.


Ahmad, S., Khushnood, R. A., Jagdale P., Tulliani, J., Ferro, G. A (2015). High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Materials & Design, 76, 223-229. DOI:

Araújo, P. C., Arruda, L. M., Del Menezzi, C. H. S., Teixeira, D. E., & Souza, M. R. (2015). Lignocellulosic composites from Brazilian giant bamboo (Guadua magna). Part 2: Properties of cement and gypsum bonded particleboards. Maderas. Ciencia y tecnologia, 13(3), 297-306. DOI:

Associação Brasileira de Normas Técnicas - ABNT. NBR 7989: Pasta celulósica e madeira - determinação de lignina insolúvel em ácido. Rio de Janeiro: ABNT, 2010a.

Associação Brasileira de Normas Técnicas - ABNT. NBR 14853: Determinação do material solúvel em etanol-tolueno e em diclorometano e em acetona. Rio de Janeiro: ABNT, 2010b.

Associação Brasileira De Normas Técnicas - ABNT. NBR 13999: Determinação do resíduo (cinza) após a incineração a 525°C. Rio de Janeiro: ABNT, 2003b.

Asociación Española De Normalización Y Certificación. UNE-EN 13279-1: Yesos de construcción y conglomerantes a base de yeso para la construcción – Parte 1: Definiciones y especificaciones. Madrid, 2006.

Asociación Española De Normalización Y Certificación. UNE-EN 13279-2: Yesos de construcción y conglomerantes a base de yeso para la construcción - Parte 2: Métodos de ensayo. Madrid, 2014.

Aizi, D. E., & Kaid-Harche, M. (2020). Mechanical Behavior of Gypsum Composites Reinforced with Retama monosperma. Fibers Proceedings, 63(1). DOI:

Aron, L., Botella, M., & Lubart, T. (2019). Culinary arts: Talent and their development. In R. F. Subotnik, P. Olszewski-Kubilius, & F. C. Worrell (Eds.), The psychology of high performance: Developing human potential into domain-specific talent (pp. 345–359). American Psychological Association. DOI:

Barbalho, N., Garcia, D. V., & Silva, J. R. (2019). Aplicação do MatLab em Análise de Resistência Mecânica de Compressão Axial do Bambu no Concreto. Unisanta Science and Technology, 7(2), 56-62.

Bahari, S. A., & Krause, A (2016). Utilizing Malaysian bamboo for use in thermoplastic composites. Journal of Cleaner Production, 110, 16-24. DOI:

Bison Wood-Cement Board. Bison. (1978). New York: Springer. 10p.

Brito, F. M. S., & Bortoletto Júnior, G. (2020). Properties of particleboards manufactured from bamboo (Dendrocalamus asper). Revista Brasileira de Ciências Agrárias, 15(1), e7245. DOI:

Brito, F. M. S., Paes, J. B., Oliveira, J. T. S, Arantes, M. D. C., & Fantuzzi Neto, H. (2015). Caracterização Anatômica e Física do Bambu Gigante (Dendrocalamus giganteus Munro). Revista Floresta e Ambiente, 22(4), 559-566. DOI:

Brito, F. M. S., Paes, J. B. P., Oliveira, J. T. S., Arantes, M. D. C., & Dudecki, L. (2020). Chemical characterization and biological resistance of thermally treated bamboo. Construction and Building Materials, 262. DOI:

Boustingorry, P., Grosseau, P., Guyonnet, R. & Guilhot, B. (2005). The influence of wood aqueous extractives on the hydration kinetics of plaster. Cement and Concrete Research, 35(11), 2081-2086. DOI:

Chinta, S. K., Katkar, P. M., & Jafer, M. M. (2013) Natural fibers reinforced gypsum composites, International Jour¬nal of Engineering and Management Sciences, 4(3), 318-325.

Çolak, A. (2006). Physical and mechanical properties of polymer-plaster composites. Journal Materials. Letters, 60(16), 1977–1982. DOI:

Fatma, N., Allegue, L., Salem, M., Zitoune, R., & Zidi, M. (2019). The effect of doum palm fibers on the mechanical and thermal properties of gypsum mortar. Journal of Composite Materials, 53(19), 2641-2659. DOI:

P.Fantilli, A., Jóźwiak-Niedźwiedzka D., & Denis, P. (2021). Bio-Fibers as a Reinforcement of Gypsum Composites. Materials, 14(17), 4830. DOI:

Gallala, W., Khater, H. M. M., Souilah, M., Nouri, K., Regaya, M. B., & Gaied, M, E. (2020). Production of low-cost biocomposite made of palm fibers waste and gypsum plaster. Revista Internacional de Contaminacion Ambiental, 36(2). DOI:

Garcia, H. V. S., Furtini, A. C. C., Brito, F. M. S., Santos, C. A., Ribeiro, D. A., Guimaraes Junior, J. B., & Mendes, L. M. (2021). Desempenho de painéis de madeira laminada colada cruzada constituídos com eucalipto, seringueira e bambu. Research, Society and development, 10(8), e33210817181. DOI:

Gomes, D. A. C., Miranda, E. H. N., Furtini, A. C. C., Santos, C. A, Resende, M. D., Villarruel, D. C. V., & Guimarães Júnior, B. G. (2021). Viabilidade de compósitos poliméricos de polipropileno reforçados com fibra de bambu. Revista brasileira de engenharia e biossistemas, 15 (4), 511-522. DOI:

Grabber, J. H. (2005). How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Science, 45, 820 – 831. DOI:

Guerra, S. P. S., Oguri, G., Eufrade-Junior, H. J., Melo, R. X., & Spinelli, R. (2016). Mechanized harvesting of bamboo plantations for energy production: Preliminary tests with a cut-and-shred harvester. Energy for Sustainable Development, 34, 62-66. DOI:

Guimarães Junior, J. B., Mendes, L. M., Mendes, R. F., Guimarães, B. M. R., & Melo, R. R. (2013). Efeito do teor de parafina nas propriedades físico-mecânicas de painéis aglomerados de Pinus oocarpa, Ciência da Madeira, 4(1), 72-82. DOI:

Iucolano, F., Caputo, D., Leboffe, F., & Liguori, B. (2015). Mechanical behavior of plaster reinforced with abaca fibers. Construction and Building Materials, 99, 184 -191. DOI:

Jóźwiak-Niedźwiedzka, D., & P.Fantilli, A. (2020). Wool-reinforced cement-based composites. Materials, 13 (16), 3590. DOI:

Lokesh, P., Surya Kumari, T. S. A., Gopi, R., Loganathan, G. B. (2020). A study on mechanical properties of bamboo fiber reinforced polymer composite, Materials Today: Proceedings, 22(3), 897-903. DOI:

Magalhães, A. C. T. V., & Almeida, J. A. (2010). O uso da mucilagem de cacto em pastas de gesso: efeitos na absorção de água e na resistência a flexão estática. Ambiente construído, 10(1), 139 - 151. DOI:

Mesquita Júnior, L., Faria, D. L., Guimarães Júnior, J. B., Eugênio, T. M. C., Ferreira, S. R., Rabelo, G. F. (2018). Compósitos à base de cimento e gesso reforçados com partículas de madeira de Eucalyptus grandis. Ciência da Madeira, 9(3), 191-198. DOI:

Miller, D. P., & Moslemi, A. A. (1991). Wood-cement composites: effect of model compounds on hydration characteristics and tensile strength. Wood and Fiber Science, 23 (4), 472–482.

Ngah, S. A., Dams, B., Ansell, M. P., Stewart, J., Hempstead, R., & Ball, R. J. (2020). Structural performance of fibrous plaster. Part 1: Physical and mechanical properties of hessian and glass fiber reinforced gypsum composites. Construction and Building Materials, 259, 120396. DOI:

Oliveira, A. S., Villela, L. S., Veloso, M. C. R. A., Silva, D. W., Mendes, L. M., & José Benedito Guimarães Junior. Compósitos com matriz de gesso reforçada com fibras de madeira de eucalipto, Scientia Forestalis, 48(127), e3260, 2020. DOI:

Pang, B., Zhou T., Cao, X., Zhao B., Sun, Z., Liu, X., Chen, Y., Yuan, T (2022). Performance and environmental implication assessments of green bio-composite from rice straw and bamboo. Journal of cleaner Production, 375, 134037. DOI:

Pinto, N. A., Fioriti, C. F., Bernabeu, J. P., Akasaki, J. L. (2016). Avaliação de matriz de gesso com incorporação de borracha de pneus para utilização na construção civil. Revista Tecnológica, 25(1), 103–117. DOI:

Ramesh, M., Rajeshkumar, L., & Bhuvaneshwari, V. (2021). Bamboo fiber reinforced composites. In: M. Jawaid, S. Mavinkere Rangappa, & S. Siengchin (Eds), Bamboo Fiber Composites. Composites Science and Technology. 526 p. 2021. DOI:

Sophia, M., Sakthieswaran, N., Babu G.O. (2016). Gypsum as a construction material - a review of recent developments. International journal for innovative research in science & technology, 2(12), 315-323.

Sawsen C., Fouzia K., Mohamed B. And Moussa G. (2015). Effect of flax fibers treatments on the rheological and the mechanical behavior of a cement composite. Construction and Building Materials, 79, 229-235. DOI:

Souza, F. M., Leão, L. O., Quaresma, W. M. G. (2020). Estado da Arte do Bambu na Construção Civil. Brazilian Journal of Development, 6(4), 19637- 19653. DOI:

Silva, C. G., Barbosa, N. P., & Oliveira, M. P. (2012). Potentiality of Plaster Reinforced by Bamboo in Structural Elements. Key Engineering Materials, 517, 213-216. DOI:

Silva, D. S., Ribeiro, M. M., Rodrigues, J. S., Corrêa, A. C., Costa, D. C. L., Costa, H. A. O., Silva, F. J. A. R., Santos, A. J. G., Silva, M. H. P., Fujiyama, R. T. (2022). Properties of flexural and impact of matrix composites polyester reinforced with short lignocellulosic fibers. Research, Society And Development, 11, e32511326612, 2022. DOI:

Selamat, M. E., Hashim, R., Sulaiman, O., Kassim, M. H. M., Saharudin, N. I., & Taiwo, O. F. A. (2019). Comparative study of oil palm trunk and rice husk as fillers in gypsum composite for building material. Construction and Building Materials, 197, 526-532. DOI:

Simatupanga, M. H. (1998). Addition of metakaoline to Portland cement, influence on hydration and properties of cement-bonded wood composites. Holz als Roh-und Werkstoff, 56, 215-216. DOI:

Simatupang, M. H., Geimer, R. L. (1990). Inorganic Binder for Wood Composites: Feasibility and Limitations, in Wood Adhesive. Madison, Wisconsin, USA, pp. 169–176.

Shiroma, L., Camarini, G., Beraldo, A. L. (2016). Effect of wood particle treatment on the properties of gypsum plaster pastes and composites. Revista Matéria, 21(4), 1032-1044. DOI:

Tan, W., Hao, X., Fan, Q., Sun, L., Xu, J., Wang, Q., & Ou, R. (2019). Bamboo particle reinforced polypropylene composites made from different fractions of bamboo culm: Fiber characterization and analysis of composite properties. Polymer Composites, 40(12), 4619–4628. DOI:

Veloso, M. C. R. A., Villela, L. S., Mesquita Júnior, L., Valle, M. L. A., Mendes, L. M., Guimarães Júnior, J. B. (2021). Produção e caracterização de compósitos à base de gesso reforçado com partículas de resíduo da agroindústria do cacau. Revista Matéria, 26(1). DOI:

Villela, L. S., Castro, E. D. Mesquita Júnior, L. et al. (2020). Desempenho físico-mecânico de compósitos à base de gesso reforçados com embalagens multicamadas trituradas. Revista Matéria, 25(3). DOI:

Weber, A. M., Cechin, L., Tokarski, R. B. (2017). Análise da influência do traço nas propriedades do compósito cimento-madeira. Revista Principia, 1(3), 50-59. DOI:

Wu, Y. F. (2009). The structural behaviour and design methodology for a new building system consisting of glass fiber reinforced gypsum panels. Construction and Building Materials, 23, 2905–2913. DOI:

Zhu, C.; Zhang, J.; Peng, J.; Cao, W.; & Liu, J. (2018). Physical and mechanical properties of gypsum-based composites reinforced with PVA and PP fibers. Construction and Building Materials, 163, 695–705. DOI:




How to Cite

Brito, F. M. S., Alvarenga, B. L., Mesquita Júnior, L., Mendes, L. M., & Guimarães Júnior, J. B. (2024). Gypsum-based composites reinforced with bamboo particles . Revista Brasileira De Engenharia De Biossistemas, 18.



Regular Section