Dripper clogging: emphasis on the problem and how to minimize impact
DOI:
https://doi.org/10.18011/bioeng.2022.v16.1095Keywords:
Drip irrigation, Water quality, EmittersAbstract
Irrigation is a useful tool to achieve a better productivity and quality foods, which contributes to a higher efficient use of agriculture land. Drip irrigation is characterized by higher application efficiency, providing an efficient control of the irrigation depth required. Moreover, it has advantages such as lower evaporation loss and higher crop yields when associated with fertigation. However, dripper clogging is pointed out by several authors as the main limiting factor for a rapid adoption of drip irrigation on a larger scale. Emitter clogging susceptibility depends basically on five parameters: water quality, filtration system, fertilizer quality, labyrinth architectural layout and maintenance procedures. The adoption of chemical treatments helps to control biological agents and precipitates, making it possible to minimize the risk of clogging. This paper aims to understand how drip clogging process occurs, providing scientific arguments and support on the development of a standardized test pattern, making progress in order to identify commercial emitters that are less susceptible to clogging under field conditions.Downloads
References
Adin, A., & Elimelech, M. (1989). Particle filtration for wastewater irrigation. Journal of irrigation and drainage engineering, 115(3), 474-487. https://doi.org/10.1061/(ASCE)0733-9437(1989)115:3(474)
Adin, A., & Sacks, M. (1991). Dripper-clogging factors in wastewater irrigation. Journal of Irrigation and Drainage Engineering, 117(6), 813-826. https://doi.org/10.1061/(ASCE)0733-9437(1991)117:6(813)
Almeida, A. N. D., Coelho, R. D., Costa, J. D. O., & Farías, A. J. (2017). Methodology for dimensioning of a center pivot irrigation system operating with dripper type emitter. Engenharia Agrícola, 37, 828-837. http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n4p828-837/2017
Angelakis, A. N., Zaccaria, D., Krasilnikoff, J., Salgot, M., Bazza, M., Roccaro, P., ... & Fereres, E. (2020). Irrigation of world agricultural lands: Evolution through the Millennia. Water, 12(5), 1285. https://doi.org/10.3390/w12051285
Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. Rome: Food and Agriculture Organization of the United Nations.
Bernardo, S., Soares, A. A., Mantovani, E. C. (2006). Manual de irrigação. 8.ed. Viçosa: Ed. UFV. 625p.
Bounoua, S., Tomas, S., Labille, J., Molle, B., Granier, J., Haldenwang, P., & Izzati, S. N. (2016). Understanding physical clogging in drip irrigation: in situ, in-lab and numerical approaches. Irrigation Science, 34(4), 327-342. https://doi.org/10.1007/s00271-016-0506-8
Bucks, D. A., Nakayama, F. S., & Gilbert, R. G. (1979). Trickle irrigation water quality and preventive maintenance. Agricultural Water Management, 2(2), 149-162. https://doi.org/10.1016/0378-3774(79)90028-3
Capra, A., & Scicolone, B. (1998). Water quality and distribution uniformity in drip/trickle irrigation systems. Journal of Agricultural Engineering Research, 70(4), 355-365. https://doi.org/10.1006/jaer.1998.0287
Coelho, R. D., de Almeida, A. N., de Oliveira Costa, J., & de Sousa Pereira, D. J. (2022). Mobile drip irrigation (MDI): Clogging of high flow emitters caused by dragging of driplines on the ground and by solid particles in the irrigation water. Agricultural Water Management, 263, 107454. https://doi.org/10.1016/j.agwat.2022.107454
Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856-8874. https://doi.org/10.3390/molecules20058856
Kang, S., Hao, X., Du, T., Tong, L., Su, X., Lu, H., ... & Ding, R. (2017). Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agricultural Water Management, 179, 5-17. https://doi.org/10.1016/j.agwat.2016.05.007
Khozyem, H., Hamdan, A., Tantawy, A. A., Emam, A., & Elbadry, E. (2019). Distribution and origin of iron and manganese in groundwater: case study, Balat-Teneida area, El-Dakhla Basin, Egypt. Arabian Journal of Geosciences, 12(16), 1-16. https://doi.org/10.1007/s12517-019-4689-1
Lamm, F. R., Ayars, J. E., & Nakayama, F. S. (2006). Microirrigation for crop production: design, operation, and management. Elsevier.
Li, G. B., Li, Y. K., Xu, T. W., Liu, Y. Z., Jin, H., Yang, P. L., ... & Tian, Z. F. (2012). Effects of average velocity on the growth and surface topography of biofilms attached to the reclaimed wastewater drip irrigation system laterals. Irrigation Science, 30(2), 103-113. https://doi.org/10.1007/s00271-011-0266-4
Lili, Z., Yang, P., Ren, S., Li, Y., Liu, Y., & Xia, Y. (2016). Chemical clogging of emitters and evaluation of their suitability for saline water drip irrigation. Irrigation and Drainage, 65(4), 439-450. https://doi.org/10.1002/ird.1972
Liu, H., Fu, C., Gu, T., Zhang, G., Lv, Y., Wang, H., & Liu, H. (2015). Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corrosion Science, 100, 484-495. https://doi.org/https://doi.org/10.1016/j.corsci.2015.08.023
Miao, L., Hou, J., You, G., Liu, Z., Liu, S., Li, T., ... & Qu, H. (2019). Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Environmental Pollution, 255, 113300. https://doi.org/10.1016/j.envpol.2019.113300
Michalakos, G. D., Nieva, J. M., Vayenas, D. V., & Lyberatos, G. (1997). Removal of iron from potable water using a trickling filter. Water research, 31(5), 991-996. https://doi.org/10.1016/S0043-1354(96)00343-0
Nakayama, F. S., & Bucks, D. A. (1991). Water quality in drip/trickle irrigation: a review. Irrigation science, 12(4), 187-192. https://doi.org/10.1007/BF00190522
Niu, W., Liu, L., & Chen, X. (2013). Influence of fine particle size and concentration on the clogging of labyrinth emitters. Irrigation Science, 31(4), 545-555. https://doi.org/10.1007/s00271-012-0328-2
Pizarro Cabello, F. (1996). Riegos localizados de alta frecuencia. 2ª ed. Mundi-Prensa, Madrid.
Puig-Bargues, J., Arbat, G., Elbana, M., Duran-Ros, M., Barragán, J., De Cartagena, F. R., & Lamm, F. R. (2010). Effect of flushing frequency on emitter clogging in microirrigation with effluents. Agricultural Water Management, 97(6), 883-891. https://doi.org/10.1016/j.agwat.2010.01.019
Qingsong, W., Gang, L., Jie, L., Yusheng, S., Wenchu, D., & Shuhuai, H. (2008). Evaluations of emitter clogging in drip irrigation by two-phase flow simulations and laboratory experiments. Computers and Electronics in Agriculture, 63(2), 294-303. https://doi.org/10.1016/j.compag.2008.03.008
Ravina, I., Paz, E., Sofer, Z., Marcu, A., Shisha, A., & Sagi, G. (1992). Control of emitter clogging in drip irrigation with reclaimed wastewater. Irrigation Science, 13(3), 129-139. https://doi.org/10.1007/BF00191055
Resende, R. S., Coelho, R. D., & Piedade, S. M. D. S. (2000). Suscetibilidade de gotejadores ao entupimento de causa biológica. Revista Brasileira de Engenharia Agrícola e Ambiental, 4, 368-375. https://doi.org/10.1590/S1415-43662000000300011
Sánchez, L. D., & Viáfara, C. A. (2014). Impacto de los sólidos suspendidos totales sobre la obstrucción en emisores de riego localizado de alta frecuencia. Ingeniería y Competitividad, 16(2), 199-210. https://doi.org/10.25100/iyc.v16i2.3695
Song, P., Li, Y., Zhou, B., Zhou, C., Zhang, Z., & Li, J. (2017). Controlling mechanism of chlorination on emitter bio-clogging for drip irrigation using reclaimed water. Agricultural Water Management, 184, 36-45. https://doi.org/10.1016/j.agwat.2016.12.017
Stewart-Wade, S. M. (2011). Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management. Irrigation Science, 29(4), 267-297. https://doi.org/10.1007/s00271-011-0285-1
Tajrishy, M. A., Hills, D. J., & Tchobanoglous, G. (1994). Pretreatment of secondary effluent for drip irrigation. Journal of Irrigation and Drainage Engineering, 120(4), 716-731. https://doi.org/10.1061/(ASCE)0733-9437(1994)120:4(716)
Taylor, H. D., Bastos, R. K. X., Pearson, H. W., & Mara, D. D. (1995). Drip irrigation with waste stabilisation pond effluents: Solving the problem of emitter fouling. Water Science and Technology, 31(12), 417-424. https://doi.org/10.1016/0273-1223(95)00528-U
Wei, Q., Shi, Y., Lu, G., Dong, W., & Huang, S. (2008). Rapid evaluations of anticlogging performance of drip emitters by laboratorial short-cycle tests. Journal of irrigation and drainage engineering, 134(3), 298-304. https://doi.org/10.10610733-9437
Wei, Z., Cao, M., Liu, X., Tang, Y., & Lu, B. (2012). Flow behaviour analysis and experimental investigation for emitter micro-channels. Chinese journal of mechanical engineering, 25(4), 729-737. https://doi.org/10.3901/CJME
Zhang, J., Zhao, W., & Lu, B. (2011). New method of hydraulic performance evaluation on emitters with labyrinth channels. Journal of irrigation and drainage engineering, 137(12), 811-815. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000365
Zhang, J., Zhao, W., Tang, Y., & Lu, B. (2010). Anti-clogging performance evaluation and parameterized design of emitters with labyrinth channels. Computers and Electronics in Agriculture, 74(1), 59-65. https://doi.org/10.1016/j.compag.2010.06.005
Zhang, L., Wu, P., Zhu, D., & Zheng, C. (2017). Effect of pulsating pressure on labyrinth emitter clogging. Irrigation Science, 35(4), 267-274. https://doi.org/10.1007/s00271-017-0532-1
Zhou, B., Li, Y., Song, P., Zhou, Y., Yu, Y., & Bralts, V. (2017). Anti-clogging evaluation for drip irrigation emitters using reclaimed water. Irrigation Science, 35(3). https://doi.org/10.1007/s00271-016-0530-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Brasileira de Engenharia de Biossistemas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
a) Authors retain the copyright and grant the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License that allows the sharing of the work with recognition of authorship and initial publication in this journal.
b) Authors are authorized to assume additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (eg, publish in an institutional repository or as a book chapter), with recognition of authorship and initial publication in this journal.