Eucalyptus and Ipomoea nil phytotoxicity after herbicide application


  • Ilca Puertas de Freitas e Silva Federal University of Triângulo Mineiro – UFTM, Iturama, MG, Brazil
  • Josué Ferreira Silva Junior Federal University of Triângulo Mineiro – UFTM, Iturama, MG, Brazil
  • Caio Antonio Carbonari São Paulo State University – UNESP, Botucatu, SP, Brazil
  • Edivaldo Domingues Velini São Paulo State University – UNESP, Botucatu, SP, Brazil
  • Rosilaine Araldi de Castro AgroQuatro-S Agronomic Experimentation, Orlândia, SP, Brazil
  • Leandro Tropaldi São Paulo State University – UNESP, Dracena, SP, Brazil.
  • João Domingos Rodrigues São Paulo State University – UNESP, Botucatu, SP, Brazil



Photosystem, Eucalyptus urograndes, Viola string, Fluorometer


The presence of weeds in forest estates is considered one of the biggest problems in the implantation, maintenance, and renovation of eucalyptus plantations. This research aims to evaluate the phytotoxicity of herbicides on eucalyptus and I. nil. The experiment was installed inside a greenhouse in a completely randomized design with five replications. The treatments consisted of the application of 0.2% (v/v) adjuvant with the herbicides: atrazine (2250 g i.a. ha-1), clomazone (720 g i.a. ha-1), sulfentrazone (600 g i.a. ha-1), glyphosate (1440 g i.a. ha-1), and control. The following variables were analyzed: electron transport rate (ETR), water consumption, and plant phytotoxicity. For I. nil plants treated with atrazine, it was possible to detect phytotoxicity previous to the appearance of symptoms in the visual analysis, due to the inhibition of ETR at 24 hours after application (HAA). The highest levels of phytotoxicity for eucalyptus and I. nil were obtained by glyphosate and sulfentrazone, respectively.


Download data is not yet available.

Author Biography

Ilca Puertas de Freitas e Silva, Federal University of Triângulo Mineiro – UFTM, Iturama, MG, Brazil

Departamento de Produção e Melhoramento Vegetal, com área de atuação em matologia. As áreas de interesse são: biologia das plantas daninhas, fisiologia e metabolismo de herbicidas, comportamento de herbicidas no ambiente, resistência de plantas daninhas a herbicidas, controle químico de plantas daninhas, manejo integrado de plantas daninhas e tecnologia de aplicação.


Ahsan, N., LEE, D.G., Lee, K.W., Alam, I., Lee, S. H., Bahk, J.D., & Lee, B.H. (2008). Glyphosate induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiology and Biochemistry, 26(12), 1062-1070. DOI:

Alves, E., Velini, E. D., Trindade, M. L. B., Catane, A. C., Marino, C. L., & Mori, E. S. (2005). Eucalyptus ESTs related to genes for oxidative stress. Journal of Environmental Science and Health, 40(1), 151-291. DOI:

Aaraldi, R., Velini, E. D., Girotto, M., Carbonari, C. A., Jasper, S. P., & Trindade, M. L. B. (2011). Effects on the electron transport rate of weeds after application of amicarbazone. Advances in Weed Science, 29(3), 647-653. DOI:

Araldi, R., Corniani, N., Tropaldi, L., Girotto, M., Belapart, D., & Simões, P. S. (2015) Chlorophyll fluorescence in guanandi tree (Calophyllum brasiliense) after herbicide application. Advances in Weed Science, 33(1), 77-82. DOI:

Brodribb, T. J., & Holbrook, N. M. (2003). Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiology, 132(4), 2166-2173. DOI:

BRAZILIAN AGRICULTURAL RESEARCH COMPANY, EMBRAPA. The Eucalyptus. (2019). Available in: Access in: 11.24. 2021.

BRAZILIAN INSTITUTE OF GEOGRAPHY AND STATISTICS, IBGE. 2019. Available in: Access in 11.25.2021.

BRAZILIAN SOCIETY OF WEED SCIENCE, SBCPD. (1995). Procedures for Installation, Evaluation and Analysis of Experiments with Herbicides. Londrina.

Campos, L. H. F., Francisco, M. O., Carvalho, S. J. P., Nicolai, M., & Christoffoleti, P. J. (2009). Susceptibility to Ipomoea quamoclit, I. Triloba and Merremia cissoides to herbicides sulfentrazone e amicarbazone. Advances in Weed Science, 27(4), 831-840. DOI:

Campos, A. C. (2021). Planted forests in Brazil amount to 9.3 million hectares in 2020: areas covered by Eucalyptus represent 80.2% of the forests. Available in: Access in 11.24.2021.

Carbonari, C. A., Velini, E. D., Gomes, G. L. G. C., Takahashi, E. M., & Araldi, R. (2012). Selectivity and root absorption of sulfentrazone in eucalyptus clones. Advances in Weed Science, 30(1), 147-153. DOI:

Carbonari, C. A. (2017) Weed control methods in eucalyptus. Forestry Opinions Magazine: cellulose, paper, coal, steel, panels and wood, 46, division F, 36. Available in: Access in: 11.26.2021.

Carvalho, L. B., Alves, P. L. C. A., & Costa, F. R. (2015) Differantial response of clones of eucalyptus to glyphosate. Brazilian Journal of Forest Science, 39(1),177-187. DOI:

Dalley, C. D., Bernards, M. L., & Kells, M. J. (2006) Effect of water removal timing and row spacing on soil moisture in corn (Zea mays). Weed Ecology, 20(2), 399-409. DOI:

Dayan, F. E., Trindade, M. L. B., & Velini, E. D. (2009). Amicarbazone, a new photosystem II inhibitor. Weed Science, 57(1), 579-583. DOI:

Dayan, F. E., & Zaccaro, M. L. M. (2012). Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pesticide Biochemistry and Physiology, 102(1), 189-197. DOI:

Fedtke, C., & Duke, S. O. (2005) Herbicides. In B. Hock, & E.F. Elstner (Eds.), Plant toxicology (4th ed., pp. 247-330). Marcel Dekker.

Freitas, M. A. M., Passos, A. B. R. J., Torres, L. G., Moraes, H. M. F., Faustino, L. A., & Rocha, P. R. R. (2014). Sulfentrazone sorption in different soil types determined by bioassays. Advances in Weed Science, 32(2), 385-392. DOI:

Girotto, M., Araldi, R., Velini, E. D., Gomes, G. L. G. C., Carbonari, C., & Jasper, S. P. Photosynthetic efficiency of sugarcane submitted to pre-emergence application of atrazine and tebuthiuron. Weed Control Journal, 10(1) p. 134-142, 2011. DOI:

Girotto, M., Araldi, R., Velini, E. D., Carbonari, C. A., Gomes, G. L. G. C., & Trindade, M. L. B. (2012) Photosynthetic efficiency of sugarcane cultivars and different weed species after diuron application. Advances in Weed Science, 30(3), 599-606. DOI:

Machado, A. F. L., Ferreira, L. R., Santos, L. D. T., Santos, J. B., Ferreira, F. A., & Viana, R. G. (2009) Absorption, translocation and root exudation of glyphosate in Eucalyptus clones. Advances in Weed Science, 27(3), 549-554. DOI:

Ministry of Agriculture, Livestock and Supply. Agrofit. 2021. Available in: Access in 11.24.2021

María N., Felipe, M. R., & Fernández-Pascual M. (2005) Alterations induced by glyphosate on lupin photosynthetic apparatus and nodule ultrastructure and some oxygen diffusion related proteins. Plant Physiology and Biochemistry, 43(10), 985-996. DOI:

Minogue, P. J., Osiecka, A., & Lauer, D. K. (2018) Selective herbicides for establishment of Eucalyptus benthamii plantations. New Forests, 49(4), 529-550. DOI:

Monquero, P. A., Cury, J. C., & Christoffoleti, P. J. (2005) Control by glyphosate and general characterization of the leaf surface of Commelina benghalensis, Ipomoea hederifolia, Richardia brasiliensis and Galinsoga parviflora. Advances in Weed Science, 23(1), 123-132. DOI:

Pereira, F. C. M., & Alves, P. L. C. A. (2015) Herbicides for weed control in eucalyptus. Weed Control Journal, 14(4), 333-347. DOI:

Schetz, M., Camargo, M. B., Rezende, E. H., Martinez, D. T., & Sousa, N. J. (2021). Evaluation of active ingredients for weed control in eucalyptus clonal planting in the remounting and non-remounting system. Scientia Forestalis, 129(49), 1-12. DOI:

Silva, M. V. P., Souza, F. C., Reis, L. S.; Pereira, J. C., & Souza, R. C. (2015). Application of pre-emergence herbicides on sugarcane straw to control species of the family Convolvulaceae. Magazine Agro@ambiente, 9(2), 184-193. DOI:

Takahashi, E. M., Alves, P. L. C. A., Salgado, T. P., Farias, M. A., Silva, A. C., & Biaggioni, B. T. (2009). Consequences of clomazone and sulfentrazone drift in clones of E. grandis X E. urophylla. Brazilian Journal od Forest Science, 33(4), 65-683. DOI:

Toebe, M., Brum, B., Lopes, S. J., Cargnelutti Filho, A., & Silveira, T. R. (2010). Estimation of the leaf area of Crambe abyssinica by leaf discs and digital photos. Rural Science, 40(2), 445-448. DOI:

Tropaldi, L., Velini, E. D., Carbonari, C. A., Araldi, R., Corniani, N., & Girotto, M. (2015). Detection of tolerance of different crabgrass species to photosystem II inhibitor herbicides using the fluorescence technique. Rural Science, 45(5), 767-773. DOI:

Tuffi Santos, L. D., Sant’anna-Santos, B. F., Meira, R. M. S.A., Ferreira, F. A., Tiburcio R. A. S.T., & Silva, E. C. F. (2009). Leaf micromorphology in the analysis of phytotoxicity by glyphosate in Eucalyptus grandis. Advances in Weed Science, 27(4), 711-720. DOI:

Ventrella, A., Catucci, L., & Agostiano, A. (2010). Herbicides affect fluorescence and electron transfer activity of spinach chloroplasts, thylakoid membranes and isolated Photosystem II. Bioelectrochemistry, 79(1), 43-49. DOI:

Zablotowicz, R.M., & Reddy, K.N. (2004). Impact of glyphosate-resistent transgenic soybean: a minireview. Journal of Environmental Quality, 33(1), 825-831. DOI:




How to Cite

Freitas e Silva, I. P. de, Ferreira Silva Junior, J., Antonio Carbonari , C., Domingues Velini , E., Araldi de Castro , R., Tropaldi , L., & Domingos Rodrigues , J. (2023). Eucalyptus and Ipomoea nil phytotoxicity after herbicide application . Revista Brasileira De Engenharia De Biossistemas, 17.



Regular Section