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ABSTRACT 

The Penman–Monteith equation (PM) is widely recommended by The Food and Agriculture 

Organization (FAO) as the method to calculate reference evapotranspiration (ET0). However, 

the detailed climatological data required by the PM are not often available. The present study 

aimed to develop bayesian regularized neural networks (BRNN)-based ET0 models and 

compare its results with the PM approach. Forteen weather stations were selected for this 

study,located in Juazeiro (BA) and Petrolina (PE) counties, Brazil. BRNN were trained with 

different parameters choices and obtained R² between 0.96 and 0.99 during training and 

between 0.95 and 0.98 with validation dataset. Root mean squared error (RMSE) less than 

0.10 mm.day-1 for BRNN when compared to PM denoted the good performance of the 

network using only air temperature, solar radiation and wind speed at average daily scale as 

input variable. Epistemic and random uncertainties were evaluated and precipitation was 

identified as the variable with the greatest uncertainty, being therefore discarded for 

modeling. 
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UTILIZAÇÃO DE REDES NEURAIS COM REGULARIZAÇÃO BAYESIANA NA 

MODELAGEM DE EVAPOTRANSPIRAÇÃO DE REFERÊNCIA EM 

AGROECOSSISTEMAS SEMIÁRIDOS 

 

RESUMO 

A equação de Penman-Monteith (PM) é amplamente recomendada pela Food and Agriculture 

Organization (FAO) como método para calcular a evapotranspiração de referência (ET0), no 

entanto, os dados climatológicos detalhados exigidos pelo PM frequentemente não estão 

disponíveis. O presente estudo objetivou desenvolver modelos de ET0 baseados em redes 

neurais de regularização bayesiana (RNRB) e comparar seus resultados com a abordagem 

PM. As 14 estações meteorológicas selecionadas para este estudo estão localizadas nos 

municípios de Juazeiro (BA) e Petrolina (PE). RNRBs foram treinadas com diferentes opções  

de parâmetros e obtiveram R² entre 0,96 e 0,99 durante o treinamento e entre 0,95 e 0,98 com 
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comparação ao PM mostrando que a rede apresentou bom desempenho utilizando apenas a 

temperatura do ar, radiação solar e velocidade do vento em valores diários médios como dado 

de entrada. As incertezas epistêmica e aleatória foram avaliadas e identificou-se a chuva como 

a variável de maior incerteza, sendo por isso não utilizada. 

Palavra-chave: modelagem, R, Bayes, inteligência artificial na agricultura 

 

INTRODUCTION 

According to KUMAR et al. (2002), 

evapotranspiration is a complex and 

nonlinear phenomenon, because it depends 

on the interaction of several climatic 

elements as solar radiation, wind speed, air 

humidity, and temperature, as well as on 

the type and growth stage of the crop. 

According to PEREIRA et al. (2002), the 

selection of a method for estimating the 

evapotranspiration depends on several 

factors. 

One of these factors is the 

availability of meteorological data, as the 

complex methods requiring a high number 

of variables have applicability only when 

all necessary data are available. When 

there is availability of data, ALLEN et al. 

(1998) recommend the application of the 

Penman-Monteith (PM) as the sole 

standard method for the definition and 

computation of the reference 

evapotranspiration (ETo). Although the 

meteorological variables necessary for the 

application of the PM method are not 

always universally available, in particular 

those related to the solution of the 

aerodynamic term, wind speed and the 

deficit of water vapor pressure in the air. 

So, the methods for estimating ETo as a 

function of the climatic elements that 

might be obtained on a more practical way, 

such as the air temperature and the 

extraterrestrial radiation, are very 

important. A tool that can be used to 

estimate ETo is the artificial neural 

network (ANN).   

According HAYKIN (1999) an 

Artificial Neural Network (ANN) is a 

popular statistical method which can 

explore the relationships between variables 

with high accuracy. Essentially, the 

structure of an ANN is computer-based 

and consists of several simple processing 

elements operating in parallel. An ANN 

consists of three layers: input, hidden, and 

output layers, hence it is referred to as a 

three-layer network. The input layer 

contains independent variables that are 

connected to the hidden layer for 

processing. The hidden layer contains 

activation functions and it calculates the 

weights of the variables in order to explore 

the effects of predictors upon the target 

(dependent) variables. In the output layer, 

the prediction or classification process is 

ended and the results are presented with a 

small estimation error.  

In ANNs, some regularization 

techniques are used with the 

backpropagation training algorithm to 

obtain a small error. This causes the 

network response to be smoother and less 

likely to overfit to training patterns 

(HAYKIN, 1999). However, the 

backpropagation algorithm is slow to 

converge and may cause an overfitting 

problem. Backpropagation algorithms that 

can converge faster have been developed 

to overcome the convergence issue. 

Similarly, some regularization methods 

have been developed to solve the 

overfitting problem in ANNs. Among 

regularization techniques, Levenberg–

Marquardt (LM) and Bayesian 

Regularization (BR) are able to obtain 

lower mean squared errors than any other 

algorithms for functioning approximation 

problems (HAGAN, MENHA, 1994). LM 

was especially developed for faster 

convergence in backpropagation 

algorithms. Essentially, BR has an 

objective function that includes a residual 

sum of squares and the sum of squared 
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weights to minimize estimation errors and 

to achieve a good generalized model.   

Evapotranspiration modeling using 

ANN has received much attention in the 

recent years. In order to estimate reference 

evapotranspiration in the state of Rio de 

Janeiro, ZANETTI et al. (2008) used a 

neural network considering geographic 

coordinates and air temperature. ALVES 

SOBRINHO et al. (2011) developed an 

ANN to estimating ETo through data of 

daily air temperature for the region of 

Mato Grosso do Sul and the neural 

network obtained the best adjustment, 

compared with the conventional methods. 

For example, Abedi-Koupai et al. (2009) 

used two hidden layers with five neurons, 

each one with four input values, one output 

layer and log-sigmoid function, and 

obtained coefficient of determination of 

0.95 for reference evapotranspiration in 

protected environment. 

In this paper we applied bayesian 

regularized neural networks (BRNN) to 

simulate PM-based reference 

evapotranspiration with less variables than 

the original PM formulation in a semiarid 

area from Brazil and evaluate epistemic 

and aleatoric uncertainties between 

predicted and original values. 

 

MATERIAL AND METHODS 

Figure 1 shows the location of the 

reference semiarid area (dashed red square 

on the right side) inside the Petrolina 

County, Pernambuco state, Northeast of 

Brazil, together with the net of forty 

agrometeorological stations (blue arrows) 

used for the weather data interpolation 

processes in a geographic information 

system (GIS) environment. 

Agrometeorological stations monitored 

solar radiation (RG), air average 

temperature (T_med), relatively humidity 

(RH_med), wind speed (W) and reference 

evapotranspiration (ET0). 

 

 

Figure 1. Location of agrometeorological stations in Petrolina/PE and Juazeiro/BA. 
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The reference evapotranspiration is 

the evapotranspiration referring to a 

hypothetical crop that completely covers 

the soil, is in active growth, does not 

present water and nutritional restriction, 

and presents specific characteristics such 

as albedo equal to 0.23 and height between 

8 and 15 cm. Among the various methods 

of ETo estimation, the Penman-Monteith, 

presented by the FAO, is recommended as 

the standard, according to Equation 1. 

 

ET0_day =
0,408(Rn − G) + [γ (

900

T + 273
) u2(es − ea)]

∆ + γ(1 + 0,34 u2)
 (1) 

 

where Δ (kPa C-1) is the slope of the 

saturated vapor pressure curve, γ is the 

psychrometric constant (kPa °C-1), T is the 

daily average air temperature, ea is the 

actual water vapor pressure of the air 

(kPa), es is the saturated water vapor 

pressure (kPa),  (es − ea) (kPa) is the 

vapor pressure deficit in the air near the 

vegetated surfaces, Rn is the net radiation 

and G is the soil heat flux. 

A neural network is formed by 

simple elements operating in parallel. 

Inspired by a biological neural network, 

the neural network receives its independent 

neurons in its input. The variables are 

passed to subsequent layers of neurons, 

where, passing through a transfer function, 

the weighted sum of input values is 

calculated, providing an output for the 

neuron in analysis (WANG et al., 2017). 

The bayesian regularized neural networks 

(BRNN) are more robust than the networks 

that use the back propagation of the errors, 

besides avoiding the over-fitting of the 

model (TICKNOR, 2013). Regularization 

refers to limiting the scale of weights and 

thresholds to improve the generalization 

ability of the neural network. In other 

words, on the basis of the neural network 

error function MSE, a penalty term, which 

can approximate the complex function, is 

added, thus improving the neural network 

function as the following Equation 2. 

F = βED + αEW (2) 

 

where the square of the network weights is 

described as Equation 3

. 

EW = ln ∑ Wi

n

0

 (3) 

 

Wi is the weight of the neural 

network connection; n is the total number 

of samples; ED is the sum of the residuals 

of the expected value and target value of 

the neural network; and α and β represent 

the regularization parameters that 

determine the training target of the neural 

network and control the degree of fit 

achieved. 

Bayesian regularization takes the 

objective function of the traditional neural 

network model as a likelihood function. 

The regularizer corresponds to the prior 

probability distribution on the network 
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weights, and the network weights are 

regarded as a random variable. A Bayesian 

regularization neural network refers to a 

forward neural network based on Bayesian 

regularization training. Using a 

hypothesized parameter probability 

distribution, this network learns in the 

whole weight space and evaluates relevant 

parameters.  

It then adjusts the regularization 

parameter and performs adaptive 

adjustment of the regularization parameters 

using Bayesian inference based on the 

posterior distribution. According to the 

probability density of weights to determine 

the optimal weighting function, and under 

the premise of ensuring the smallest 

squared network error, the weights are 

minimized to provide effective control of 

network complexity and to improve 

network generalization ability. Bayesian 

regularization optimizes the fit of the 

neural network of the training samples and 

minimizes model complexity by improving 

the training performance function of the 

neural network. 

The performance was also evaluated 

by its uncertainty. Two uncertainties types 

were retrieved. Aleatory uncertainty is an 

uncertainty class that comes from random 

processes and refers to the inherent 

uncertainty due to the probabilistic 

variability. Epistemic uncertainty is 

another uncertainty class that comes from 

the lack of knowledge. High epistemic 

uncertainty can be caused for example by 

simple models that try to fit complex 

functions with little or missing data. 

Theoretically, if the model were perfect, 

epistemic uncertainty would not exist 

(KENDALL, GAL, 2017). GAL and 

GHAHRAMANI (2016) showed that an 

ANN can be approximated to a Gaussian 

process and for this reason uncertainty 

estimates can be obtained by training a 

network with dropout and then, using 

dropout at test time too. When applying the 

test in the ANN, dropout provide Monte 

Carlo samples from the posterior, which is 

used to approximate the true posterior 

distribution. 

R packages “keras” and “tensorflow” 

were applied to perform the uncertainty 

analysis. R package PerformanceAnalytics 

performed the correlation plot. R Finally, 

R package “brnn” were used to perform 

bayesian regularized neural networks 

modelling. This package doesn’t show the 

iteration evolution of the modelling. The 

computer used in this research was an 

Intel® Core i5 with 8 GB of memory.  

 

RESULTS AND DISCUSSION 

Figure 2 shows the correlation plot of solar 

radiation (RG), air average temperature 

(T_med), relatively humidity (RH_med), 

wind speed (W) and reference 

evapotranspiration (ET0) values from 14 

agrometeorological stations on Petrolina 

County, Pernambuco state, Northeast of 

Brazil. The distribution of each variable is 

shown on the diagonal. On the bottom of 

the diagonal the bivariate scatter plots with 

a fitted line are displayed. On the top of the 

diagonal the value of the correlation plus 

the significance level as stars. Each 

significance level is associated to a symbol 

as following: p-values between 0 and 

0,001 is denoted by ***, between 0,001 

and 0,01 is denoted by **, between 0,01 

and 0,05 is denoted by *, between 0,05 and 

0.1 is denoted by ., and between 0,1 and 1 

no symbol is shown. No variable showed 

higher correlation than 0,70 with ET0, 

indicating that using only one variable as 

input gives poor estimates. Few reference 

evapotranspiration like MAKKINK 

(1957), TURC (1961), PRIESTLEY 

(1972), FAO-24 (DOORENBOS; 

PRUITT, 1984), HARGREAVES and 

SAMANI (1985), and BLANEY (1950), 

are based in multivariate regression 

equation using these variables as input 

data. 
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Figure 2. Correlation plot of solar radiation (RG), air average temperature (T_med), relatively 

humidity (RH_med), wind speed (W) and reference evapotranspiration (ET0) values from 14 

agrometeorological stations on Petrolina County, Pernambuco state, Northeast of Brazil. 

 

Figures 3 and 4 show aleatory and 

epistemic uncertainties for each variable. 

The training data (as well as the validation 

data) were generated from a standard 

normal distribution; therefore, the model 

found many more examples close to the 

average than beyond two or even three 

standard deviations. That is why these 

peripheral regions have greater 

uncertainty. While epistemic uncertainty 

potentially finds its shortcomings, aleatoric 

uncertainty is irreducible. Precipitation, for 

example, shows higher epistemic 

uncertainties at its highest value since it 

has only been reached once. This indicates 

that this modeling fails for positive 

extreme values and would have greater 

uncertainty for large precipitations. 

Therefore, this variable was not considered 

in the simulation scenarios with BRNN. 

The aleatoric uncertainty is stable in most 

variables, except in precipitation, where it 

presents greater uncertainty in non-zero 

values. 

 



 

Brazilian Journal of Biosystems Engineering v. 14(1) 73-84, 2020 
 

 

79 
 

 

Figure 3. Range of epistemic uncertainties related to normalized values of solar radiation, air 

average temperature, relative humidity, wind speed in relation to reference evapotranspiration 

modeling. 
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Figure 4. Range of aleatoric uncertainties related to normalized values of solar radiation, air 

average temperature, relative humidity, wind speed in relation to reference evapotranspiration 

modeling. 

 

To perform ANN models like the 

BRNN, the meteorological data were 

divided into a training set (here, 60% of 

the data) and a test set (40%). The training 

set is used to fit the model weights (for a 

number of different network configurations 

and training cycles), and the test set is used 

to evaluate the model against unseen data. 

The neural networks were trained with 2–

15 neurons and after each training run, 

RMSE and R2 were calculated using only 

the test data set to find the optimal number 

of hidden nodes. 

The air temperature varied from 21.8 

to 26.5 °C, whereas ETo ranged from 1.6 to 

7.8 mm. BRNN were trained with different 

parameters choices and obtained R² 

between 0.96 and 0.99 during training and 

between 0.95 and 0.98 with test dataset, 

and root mean squared error (RMSE) less 

than 0.10 mm.day-1 compared to PM. 

Table 1 show results for four parameters 

combination scenarios. Similar results 

were reported by KUMAR et al. (2008) 

comparing an ANN model with the 

methods of Hargreaves and Penman-
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Monteith (PM-56) for the estimation of 

reference evapotranspiration, with 

coefficient of determination of 0.90. 

 

 

 

Table 1. Weights found in the training of bayesian regularized neural networks (RBNN) to 

predict the reference evapotranspiration with only three variables (air temperature, solar 

radiation and wind speed at average daily scale) 

Neurons MC Samples α β EW ED RMSE (mm.day-1) R2 

2 20 0,34 150,97 31.05 17.19 0,10 0.97 

5 40 0.56 223.06 45.46 11.57 0,08 0.98 

10 40 0.17 253.71 290.01 10.07 0,06 0.98 

15 40 0.73 122.23 43.94 21.06 0,07 0.97 

 

Figure 5 shows the relationship 

between simulated values by BRNN and 

PM-sample values that were not applied in 

BRNN training and shows the low effect 

of changing the number of neurons and 

Monte-Carlo samples on the network 

accuracy. 
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Figure 5. Performance of bayesian regularized neural networks (RBNN) trained to predict the 

reference evapotranspiration for different combinations of parameters 

 

The good performance of the 

network using only air temperature, solar 

radiation and wind speed at average daily 

scale as input variable was confirmed. 

Since precipitation is a variable that is 

mostly null, it does not provide enough 

information on a daily scale for the model. 

The success of neural networks is 

directly related to their great versatility and 

it makes them a very promising tool for 

decision taking. The selection of the 

parameters defined by the user also 

contributed to the optimal performance of 

the ANN in the estimation of reference 

evapotranspiration. It is important to point 

out that other network architectures or 

other parameters can also be applied for 

similar situations and that the proposed 

solution was selected to present the 

potential of application of the tool and its 

good performance.  
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CONCLUSIONS 

Daily reference evapotranspiration 

calculated by Penman-Monteith can be 

simulated with less variables by a bayesian 

regularized neural networks with a great 

precision, showing high accuracy and 

using only air temperature, solar radiation 

and wind speed at average daily scale as 

input variable. Epistemic and random 

uncertainties in this modelling were 

evaluated and precipitation was identified 

as the variable with the greatest 

uncertainty, being therefore discarded for 

modeling. 

The analysis of uncertainties and the 

BRNN modeling are connected in relation 

to the choice of input variables of the 

model, since it gives an understanding of 

the role of each variable in improving and 

worsening the results. Tools for analyzing 

model uncertainty require statistical and 

programming knowledge, but this analysis 

provides a solid basis for understanding 

model weaknesses and potentials. 

 

CODE AVAILABILITY 

Complete code is available at 

https://github.com/cesarofs/brnn_BIOENG 
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