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ABSTRACT 

 

Currently, images from unmanned aerial vehicles (UAVs) are being used due to their high 

spatial and temporal resolution. Studies comparing different mobile data acquisition 

platforms, such as satellites, are important due to the limited spatial and temporal resolution 

of some satellites as well of the presence of clouds in such images. The objective of this study 

was to compare the vegetation indices (VIs) generated from images obtained by orbital 

(satellite) and sub-orbital (unmanned aerial vehicles - UAV) platforms. The experiment was 

conducted in a maize-growing area in Paraná, Brazil. Landsat 8 and UAV images of the study 

area were collected. Four VIs were applied: NDVI, VIgreen, ExG and VEG. The NDVI was 

selected as the control and compared with the other VIs. There was a good correlation (0.79) 

between the NDVI and the VEG for the UAV images. For the Landsat images, the highest 

correlation found was between the NDVI and the VIgreen derived from UAV images, which 

was 0.89. It is concluded that the images obtained by UAVs generated better indices, mainly 

in the dry season. 

 

Keywords: remote sensing, vegetative vigor, precision agriculture, Unmanned Aircraft 

System (UAS). 

 

VIGOR VEGETATIVO DE CULTURA DE MILHO OBTIDO POR MEIO DE 

ÍNDICES DE VEGETAÇÃO EM IMAGENS DE SENSORES ORBITAL E AÉREO 

 

RESUMO 

 

Atualmente, imagens de veículos aéreos não tripulados (VANTs) estão sendo utilizadas 

devido à sua alta 
†
resolução espacial e temporal. Estudos comparando diferentes plataformas 

de aquisição de dados móveis, como os satélites, são importantes devido à limitada resolução 

espacial e temporal de alguns satélites, bem como da presença de nuvens em tais imagens. O 

objetivo deste estudo foi comparar os índices de vegetação (IVs) gerados a partir de imagens 

obtidas por plataformas orbitais (satélite) e suborbitais (VANT). O experimento foi conduzido 

em uma área de cultivo de milho no Paraná, Brasil. Imagens Landsat 8 e VANT da área de 
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estudo foram coletadas. Quatro IVs foram aplicados: NDVI, VIgreen, ExG e VEG. O NDVI 

foi selecionado como controle e comparado com os outros IVs. Houve uma boa correlação 

(0,79) entre o NDVI e o VEG para as imagens do VANT. Para as imagens Landsat, a maior 

correlação encontrada foi entre o NDVI e o VIgreen derivado de imagens VANT, que foi de 

0,89. Conclui-se que as imagens obtidas pelos VANTs geraram melhores índices, 

principalmente na estação seca. 

 

Palavras-chave: Sensoriamento Remoto, vigor vegetativo, agricultura de precisão, Sistemas 

de Aeronaves não tripuladas. 

 

INTRODUCTION 

 

Applications of products obtained by 

remote sensing increasingly include 

monitoring agriculture and its processes. 

Remote sensing tools provide time-series 

data and orbital images with high temporal 

and spectral resolution. The identification 

of vegetation levels by means of 

reflectance in data from the Landsat 

satellite series can be exploited in several 

agricultural applications (GRAESSER & 

RAMANKUTTY, 2017). With a spatial 

resolution of 30 m, Landsat satellites are 

able to identify cyclic vegetation 

phenomena with a vast image collection 

that extends through 40 years (HE et al., 

2015). 

One of the difficulties of satellite 

remote sensing is the revisit time, which on 

average is 16 days. This makes agricultural 

applications, specifically those related to 

water, nutrient and short-cycle crop 

management, difficult (XUE & SU, 2017). 

In addition, passive sensors cannot 

penetrate clouds; therefore, no data are 

collected on overcast days, making it 

difficult to collect data during the rainy 

season.  

Given these difficulties, new forms 

of monitoring have been developed to fill 

the gaps left by orbital sensors in 

agricultural monitoring. Currently, some 

sensors are used aboard remotely piloted 

aircraft (RPA). Trujillano et al. (2018) note 

that although satellite images have been 

widely used for remote sensing 

applications, their acquisition depends on 

weather conditions and that the spatial 

resolution of the images is not good 

enough to extract features from the crop 

shape. Image acquisition using unmanned 

aerial vehicles (UAVs) has become 

affordable and can be used in a variety of 

scenarios; it makes it possible reach large 

areas of land. According to Hassan et al. 

(2018), the platforms installed in UAVs are 

not only fast data acquisition systems but 

also a tool for reducing the costs and 

labour problems associated with bad 

weather. 

UAVs have broad applicability in 

agricultural management and provide data 

different from those obtained by satellites. 

However, they still have difficulties to 

surmount, such as high cost, flight height, 

limited flight autonomy and low spectral 

capacity. In contrast, this tool offers a high 

spatial resolution that is independent of the 

temporal resolution. 

Data obtained from UAVs provide 

reliable and practical information to 

producers. The exploitation of this tool 

represents an advance in agriculture by 

making farmers independent of data 

provided from external sources (ZHANG 

& KOVACS, 2012). The future of 

agricultural data collection is linked to 

improvements in aerial data collection 

systems and algorithms applied to raw data 

(ADÃO et al., 2017). Characterizing the 

state and growth of crops through remote 

sensing is important because it supports 

decision-making in field management (JIN 

et al., 2018). 

RPAs have been systematically 

explored because their data collection can 

be specific and, in some functions, does 

not depend on the absence of clouds and 

allows the spatial resolution to be 
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calculated in advance. With pre-defined 

missions, their flights can generate 

important data for decision-making in the 

field with speed and accuracy. 

To improve the generated data and 

make them more reliable, vegetation 

indices (VIs) are important tools in factors 

such as the leaf water deficit, level of 

vigour and vegetative stage. Sayago et al. 

(2017) found relationships between the 

surface temperature and VIs in soybeans 

using sensors from Landsat satellites. 

Madugundu et al. (2017) evaluated the 

ability of Landsat and its derived VIs to 

estimate gross primary productivity in 

irrigated maize cultivation. According to 

Jackson et al. (2004), methods based on the 

normalized difference vegetation index 

(NDVI) and the normalized difference 

water index (NDWI) extracted from 

Landsat sensors are considered sufficient 

for monitoring plant water content. The 

first index is currently considered one of 

the most explored indices. 

Data obtained by orbital sensors 

provide information that can be used in 

detailed studies of agricultural crops based 

on raw data and interactions between 

bands. We highlight the NDVI, which is 

most commonly used to evaluate 

vegetation conditions (DING et al., 2014). 

Duan et al. (2017) concluded that UAV 

surveys ensure that high-quality NDVI 

data are generated. Given the various 

options for agricultural monitoring and the 

large number of VIs, it is necessary to 

study the relationships among VIs, seasons 

and data collection platforms to identify 

similarities between indices so that 

professionals can generate reliable 

products based on RGB and infrared 

sensors and satisfy their maize cultivation-

related research needs. The objective of 

this study was to analyse data provided by 

UAVs and from Landsat satellites sensors 

based on the NDVI, the green vegetation 

index (VIgreen), the excess green (ExG) 

and the vegetative index (VEG).

 

MATERIALS AND METHODS 

 

Study site  

The study was conducted in two 

maize cultivation areas in the state of 

Paraná (PR), Brazil (Figure 1). Area 1 is in 

the Candói municipality at geographic 

coordinates 25°36’47.41” S and 

52°2’54.19” W. Area 2 is in the 

Guarapuava municipality at 25°31'22.44"S 

and 51°30'16.38" W. According to the 

Köppen classification with modifications 

by Alvares et al. (2013), this region is 

classified as Cfb, a temperate oceanic 

climate with mild summers. The rainfall is 

evenly distributed without a dry season, 

and the mean temperature of the warmer 

months does not exceed 22 ºC. The amount 

of precipitation ranges from 1,100 to 2,000 

mm. There are severe and frequent frosts 

with a mean occurrence period of 10 to 25 

days annually. The mean temperature in 

Guarapuava is 16.7 °C. The mean annual 

rainfall is 1711 mm. 
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Figure 1. Locations of the study areas: (A) the area near Candói and (B) the area near 

Guarapuava-PR, Brazil. 

 

The areas under study include the 

sites of agricultural cultivation with the 

highest maize production percentages, 

which is mainly influenced by the 

predominantly fertile soil. Area 1 (A) 

contains soil classified as dystrophic dark 

latosol (EMBRAPA, 2018) during the dry-

season harvest. The following mean 

climatic conditions are observed from 

February through May: 93 mm of 

precipitation, temperature of 20.4 °C and 

relative humidity of 55%. In Area 2 (B), 

the soils were classified by Embrapa 

(2018) as humic acric dark latosol 

(Latossolo Bruno ácrico húmico - LBw) 

(Guarapuava toposequence) and humic 

dystrophic red latosol (Latossolo Vermelho 

distroférrico húmico - LVdf) (Cascavel 

toposequence). 

As shown in Figure 2, the following 

procedures were performed to complete the 

proposed objectives.

 
Figure 2 - Flowchart of methodological procedure. 

 



Brazilian Journal of Biosystems Engineering v. 13(3):195-206, 2019 
 

199 
 

Image acquisition  

The images were acquired on 

23/09/2015 (area B) and 11/11/2015 (area 

A) by a UAV with a fixed-wing platform 

capable of up to 60 minutes of autonomous 

flight in an autonomous flight controlled 

by a global navigation satellite system 

(GNSS) antenna, a pre-defined mission, 

and a gimbal for stabilizing the camera 

while the photographs were taken. The 

UAV used had a coupled digital camera 

with 20-megapixel resolution in true colour 

(red-R, green-G and blue-B) with an f/12” 

aperture and a maximum image size of 

4000 × 3000 pixels. With the objective of 

collecting data of near infrared, it was 

necessary to block the passage of infra-red. 

By switching the RGB lens (red, green and 

blue) by an NGB (near infrared, green and 

blue) lens. 

The satellite images analysed were 

extracted from the Landsat 8 satellite 

sensors while it was contemplating the 

same area as the UAV. The images from 

18/01/2016 and 07/04/2016 were acquired 

from the Earth Explorer site (NASA), 

LC08_L1TP_orbit-point (222-078),  

To correct the effects of the 

atmosphere Dark Object was applied 

Subtraction (DOS). Segundo Mather 

(1999) the atmospheric correction is 

indispensable for the calculation of 

vegetation indices, from two or more 

spectral bands. Because the images are 

affected differently by the atmospheric 

scattering. 

with the reflectance already corrected 

for atmospheric effects. These images have 

eight multispectral bands, including three 

bands in the visible (RGB) and one band in 

the NIR, with a spatial resolution of 30 m 

and a 16-bit radiometric resolution. From 

the four bands (RGB and NIR), the NDVI, 

VIgreen, ExG and VEG were calculated. 

 

 

Image processing 

The captured images were stored on 

an SD card. They were first processed 

using Agisoft PhotoScan 1.4 (AGISOFT, 

2019) to accomplish the following tasks: 

alignment, construction of the point cloud, 

densification of the point cloud

and generation of the orthomosaic. The 

images were then exported in GeoTiff 

format, and later, QuantumGis 2.16.3 

(QGIS, 2019) software was used to 

calculate and analyse the VIgreen, VEG, 

ExG and NDVI (Table 1).  

 

Table 1. Vegetation Indices used in the study 

IV Name Equation Reference 

VIgreen Index Green 

(G-R)

(G+R)
 

Gitelson et al. (2002) 

VEG  Vegetativen 𝑉𝐸𝐺 =  
𝐺

𝑅𝑎 𝐵1−𝑎
  Marchant & Onyango (2000) 

ExG Excess of green 𝐸𝑥𝐺 = 2𝐺 − 𝑅 − 𝐵 Woebbecke et al. (1995) 

NDVI 

Normalized Difference 

Vegetation Index 
NDVI = 

(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 

Rouse et al. (1973) 

 

Where: R - Reflectance obtained 

from the spectrum in the red region, 

decimal; G - Reflectance obtained from the 

spectrum in the green region, decimal; B - 

Reflectance obtained from the spectrum in 

the blue region, decimal; NIR - 

Reflectance of the spectrum in the near 

infrared region, decimal; A - Constant 

equal to 0.677. 

The satellite images were processed 

using QGIS 2.16. First, the Landsat 8 L1T 

images were radiometrically and 

geometrically corrected. The L1T images 

were presented by digital number (DN) 

and were resized to the top-of-atmosphere 

(TOA) spectral radiance/reflectance. The 

Landsat 8 images (MS bands and PAN 

band) were converted to TOA reflectances 
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using radiometric calibration. Raster 

calculators were used to generate the VIs 

for the RGB and NIR spectral bands. To 

compare the VIs calculated for the satellite 

and UAV images, the Pearson coefficient 

was used to compare the NDVI with each 

calculated VI. 

To extract the values from the UAV 

images, buffers from in gridded points 

measuring 800 m in diameter were created. 

This procedure was performed to analyse 

sufficient numbers of VIs because Landsat 

8 satellite images cover areas of 30 m × 30 

m, but photogrammetric images only cover 

areas of 0.03 m × 0.03 m. Figure 3 shows 

the buffer grid that was created for the 

UAV images. 

 

 

 
Figure 3. Buffers for extracting data from the UAV images. 

 

After the perimeter of each study 

area was extracted, the VIs were calculated 

and subjected to the Pearson correlation 

test, which is described in equation 5. 

 

𝑅𝑋𝑌 =  ∑
𝑋𝑖 − 𝑋̅

√∑ (𝑋𝑘 − 𝑋̅)²𝑛
𝑘=1

𝑛

𝑖=1

.
𝑌𝑖 − 𝑌̅

√∑ (𝑌𝑘 − 𝑌̅)²𝑛
𝑘=1

                                                                        𝑒𝑞 (5) 

 

This coefficient correlates the two 

variables X and Y and is formally defined 

as the covariance of the two variables 

divided by the standard deviation (which 

acts as a normalization factor) (DI LENA 

& MARGARA, 2010). 

 

RESULTS AND DISCUSSION 

 

The image processing and the 

subsequent calculation of the Pearson R 

correlation coefficients resulted in the 

values presented in Table 2, which shows 

the correlations between the NDVI and the 

VIgreen, the ExG and the VEG obtained 

by from the Landsat 8 satellite images. All 

the vegetation indices and image 

proportions impact the accuracy of crop 

classification. It was found that not all 

vegetation indices have positive impacts, 

but all can be related to some feature of the 

study area.  

According to Mu et al. (2018), R 

values equal or close to 1 in a fully 

supported bivariate distribution express a 

higher correlation between the data being 

evaluated, that is, they represent greater 

significance. Moreover et al. (2005) further 

subdivided the correlations as follows: R 

between 0.10 and 0.30 indicates weak 

correlation; R between 0.40 and 0.6 
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indicates moderate correlation; R between 0.70 and 1 indicates strong correlation. 

 

Table 2. Results of the Pearson correlation between the NDVI and the VIgreen, ExG and 

VEG derived from Landsat 8 satellite images of the study areas. 

Data NDVI x Vigreen NDVI x Exgreen NDVI x VEG 

18/01/2016 0.89 0.70 0.82 

07/04/2016 0.54 0.69 0.56 

The correlations between the indices 

from the Landsat 8 remote sensor (Table 2) 

are significant because most are close to 1 

and all represent moderate to strong 

correlation. However, the comparisons for 

18/01/2016 yielded the best results. As 

shown in Figure 4, the VIgreen presented 

the strongest correlation with the NDVI. 

This finding may be related to duplication 

of the green band, with higher values in 

areas with more water, because the NDVI 

responds in the same way.In the “Results 

and discussion” section all pertinent results 

should be presented in a logical order and 

discussed. Discussion portion could also 

include significance of the results in 

context of the research field, and 

suggestions for the future research. 

 

 

 
Figure 4. Vegetation indices based on the Landsat 8 image (18/01/2016). 

 

This finding was also observed by 

Jarlan et al. (2008), who found that when 

there is more crop vegetation, the indices 

produce better results because their 

responses are based on the amount of water 

present in the leaf. Santos et al. (2015) 

obtained VIs from Landsat images and 

found that during the wet season, the 

values are higher for fully developed crops 

than they are in the dry season, even with 

an irrigation system. Neres et al. (2016) 

showed that the NDVI is low during the 

dry season and note that this index is 

limited in its ability to identify areas that 

have been burned, where it produces low 

accuracy and numerous false positives. In 

contrast, in areas with clear water, the 

NDVI has less spatial variability. 

Ke et al. (2015) defended the use of 

Landsat sensors in times of higher 

humidity because the signal-to-noise ratio 

and radiometric sensitivity mean that the 

Landsat 8 OLI has greater potential for 

monitoring land surface processes, such as 

soil cover mapping and change detection, 
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vegetation growth and evapotranspiration 

analysis. 

Among the values on this date, we 

highlight the correlation between the 

NDVI and VIgreen, which reached 0.8897, 

a value close to 1. Zhang et al. (2016) 

found a correlation of 0.81 between the 

VIgreen and the NDVI in two distinct 

regions, Northeast China and eastern 

Canada. In that study, indexes were 

compared and related using the random 

forest supervised classification algorithm. 

For the second date (07/04/2016, 

Figure 5), the correlations were moderate. 

This finding is explained by the fact that 

the crop was in its final vegetative stage, 

which made it difficult to generate good 

indices. Despite this, the good response of 

VEG is highlighted; this did not occur on 

the first date. This finding shows that this 

index responds better during the vegetative 

stage when the moisture content is lower 

and can be explored with more accuracy in 

harvest estimates. 

 

  
Figure 5. Vegetation indices applied to the Landsat 8 image (07/04/2016). 

The values of R for the 

abovementioned indices obtained from 

UAV images were also calculated and are 

presented in Table 3. 

 

Table 3. Pearson correlation (R²) between the NDVI and the VIgreen, ExG and VEG 

obtained from UAV images of the study site. 

 NDVI x Vigreen NDVI x Exgreen NDVI x VEG 

Area 1 0.5078662 0.6185952 0.7883101 

Area 2 0.8351776 0.713031 0.8318866 

The results obtained from the UAV 

images (Table 3) show that in Area 1, there 

was a stronger correlation between the 

NDVI and VEG at 0.7883. This finding 

corroborates the study of Torres-Sánchez 

et al. (2014), who compared the VEG and 

the ExG obtained from UAV images flying 

at a height of 60 m and found that the VEG 

performed better when applied to a wheat 

crop in Cordoba, Spain. Figure 6 shows the 

visual similarity between the NDVI and 

the natural colours; this attests to the high 

capacity of the index in areas of vigorous 

vegetation. The similarity between the 

VEG and the NDVI is also observed. 
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Figure 6. Area A with spectral bands calculated for the vegetation indices. 

 

As shown in Table 3, higher overall 

correlations were found for Area 2, which 

was also analysed using the indices found 

in UAV images. Therefore, better indices 

were obtained in times of more vigorous 

vegetation, which is consistent with the 

Landsat data. This finding may be 

associated with higher contrast in the 

reflectance for different bands at this time 

and to the UAV's ability to decrease 

natural influences due to its high spatial 

resolution (Figure 7). The results of Shi et 

al. (2016) attest to the high monitoring 

power of UAVs when VIs area calculated 

based on images of maize and sorghum 

crops, with more hits occurring in times 

with more vigorous vegetation. According 

Juliane et al. (2015), to accurately monitor 

short-cycle crops with indices in the 

absence of NIR sensors, it is necessary for 

the crop to be in a highly vegetative stage. 

It is stressed that there is a high probability 

of error in indices that do not include the 

NIR spectral region. 

Another factor to be highlighted is 

that the absence of a multispectral camera 

coupled to the UAV may have affected the 

NIR values, which, in this study, were 

obtained with the help of a red-band 

reflectance-blocking filter. This may have 

led to the low values in Area 1, which was 

considered the more vegetated area. 

 So, understanding results from 

indices that use red locking becomes 

important. multispectral cameras, equipped 

with sensors that have the ability to acquire 

image of the near infrared band, have a 

high acquisition cost (SILVA, 2016). 

 Application of modified cameras in 

agriculture can be defined by the objective 

of the evaluation. Therefore, it is necessary 

to decide if a simple unmodified RGB 

camera or a relatively complex dual-

camera system with the NIR band should 

be selected. Many remote sensing imaging 

systems based on unmodified single 

cameras have been used for some 

agricultural applications to achieve 

satisfying results (ZHANG et al., 2016). 
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Figure 7. Area B in the vegetation index calculations. 

 

When comparing the correlation 

coefficients of the different indices 

obtained from Landsat 8 images to those 

obtained from UAV images, it was found 

that both resulted in significant values. 

However, during the dry season, it is 

difficult to generate VIs by means of 

sensors in satellite platforms because the 

mean infrared band is influenced by water. 

In contrast, the UAV images resulted in 

lower correlation coefficients in the more 

vegetated area than the Landsat 8 images 

did, which can be attributed to the absence 

of a multispectral sensor, which may have 

affected the values for the NIR band, even 

with the red-blocking filter. 

The data provided by the satellite 

sensors can be used for a wider range of 

indices because they include 8 spectral 

bands; however, these data have a spatial 

resolution of 30 m × 30 m, which may 

compromise surveys of small areas. 

Another important point is that the 

temporal resolution of 16 days can impair 

monitoring, as in the case of maize, which 

is considered a seasonal crop, i.e., three to 

four months pass between planting and 

harvest. 

 

CONCLUSIONS 

 

According to the comparison 

between indices based on satellite images 

and UAV scenes, we note that there are 

still difficulties with generating vegetation 

indices. The limitation of UAVs with 

respect to NIR sensors is apparent; 

therefore, the practicality of using UAVs 

and rapid data generation are highlighted. 

When comparing the seasons, the survey 

that used UAVs yielded better results. 

Regarding the performance of the 

VIs, the VEG presented the strongest 

correlation with the NDVI. It is important 

to note that the VEG is based on the RGB 

bands, and therefore, the equipment costs 

less. Satellite sensors have limitations in 

relation to the stations surveyed, because 

they are influenced by climatic conditions, 

low spatial resolutions and high temporal 

resolutions. Despite this, they were better 

at generating VIs that use the infrared band 

when compared to UAVs. 
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