
 Brazilian Journal of Biosystems Engineering (2023), 17 1197

* Corresponding author

E-mail address: vinicius.mastelini@unesp.br (V. Mastelini).

https://doi.org/10.18011/bioeng.2023.v17.1197

Received: 18 January 2023 / Accepted: 11 September 2023 / Available online: 13 November 2023

REGULAR ARTICLE

Control and management of water quality for Nile tilapia fish in net tanks based on
fuzzy modeling.

Vinícius Mastelini1, 3, Timóteo Ramos Queiroz1, 4, Luís Roberto Almeida Gabriel Filho1,4, Mario Mollo Neto1, 2

1Graduate Program in Agribusiness and Development, School of Science and Engineering, São Paulo State University - UNESP, Tupã, SP, Brazil.

2Department of Biosystems Engineering, School of Science and Engineering, São Paulo State University - UNESP, Tupã, SP, Brazil.
3University Center of Adamantina – UNIFAI, Adamantina, SP, Brazil.
4Department of Management, Development and Technology, School of Science and Engineering, São Paulo State University - UNESP, Tupã, SP, Brazil.

Regular Section

Academic Editor: Celso Antonio Goulart

Statements and Declarations

Data availability

All data will be shared if requested.

Institutional Review Board Statement

Not applicable.

Conflicts of interest

The authors declare no conflict of interest.

Funding

This study was financed by the National Council for

Scientific and Technological Development (CNPq) for
the research productivity grants awarded (Process

#313339/2019-8 (MMN) and Proc. 315228/2020-2

(LRAG))

Autor contribution

VM: Conceptualization, Experimental data collection,

Data custody, Data analysis, Writing the manuscript;
TRQ: Data analysis, Writing the manuscript,

Manuscript Review; LRAG: Data analysis, Writing the

manuscript, Manuscript Review; MMN: Data analysis,
Writing the manuscript, Manuscript Review,

Experimental data collection, Data analysis.

Abstract

Being classified as one of the most important species for fish farming, the Nile tilapia

has seen a huge increase in breeding worldwide. As in any cultural medium, dealing with

the quality of the medium in which it is grown guarantees a large part of the success of

the process, being of equal importance, in this case, the quality of the water. Taking

advantage of existing mathematical models, humans were able to measure and design

best practices in virtually all areas, pointing to its great functionality, this article used the

Fuzzy logic mathematical model together with Mamdani inference to analyze water

quality scenarios and their consequences, various environments, variables, capable of

directly affecting fish farming. The purpose was to use the MatLab scientific software to

cross these variables with the possible output scenarios, facilitating the producer's

decision-making. As a result of the research, it was possible to develop an algorithm to

be embedded in a mobile application in the future with fuzzy mathematical modeling,

with a Mamdani inference system for management and control of water quality in Nile

Tilapia fish farming. The same will be made available to these breeders, since it has a

structure of rules, aiming at the delivery of scientific information that collaborates with

the best cultivation practices, improving production and profitability, through decision

support to fish farmers.

Keywords

Mathematical Models; Decision Making; Measure; Design; MatLab.

This article is an open access, under a Creative Commons Attribution 4.0 International License.

Introduction

Used in a vast amount of fields of human activity, many of

the existing practical problems require mathematical models,

and sometimes, in very different situations, however,

maintaining the same approach and philosophy (Sodré, 2007).

A mathematical model is capable of being presented

through a representation of a real system, it must represent a

system and how changes occur in it (Bassanezi, 1988;

Bertalanffy, 1973; Sodré, 2007).

A model is a simplification of the real world or some way

of working with it, however, the essential characteristics of

this real-world must exist in this model, in such a way that it

behaves in the same or similar way (Bassanezi, 1988;

Bertalanffy, 1973; Sodré, 2007).

The main objective of a model is that it allows

understanding of the model itself more simply (Bassanezi,

1988; Bertalanffy, 1973; Sodré, 2007).

Fuzzy logic is based on the Fuzzy sets’ theory (Zadeh,

1988). It differs from other traditional logic systems due to its

characteristics and details. In this type of logic, exact

reasoning corresponds to a limiting case of approximate

reasoning, interpreted as a process of composing fuzzy

relations. The truth value of a proposition in Fuzzy logic can

be a Fuzzy subset of any partially ordered set, different from

binary logic systems, where the truth value assumes only two

values: true (1) or false (0). Using multivalued logic systems,

the truth value can be an element of a finite set, an interval, or

even a Boolean algebra. In fuzzy logic (where Fuzzy fits), the

truth values are expressed linguistically (true, very true, not

true, false, very false), where each term is interpreted as a

Fuzzy subset of the interval (Zadeh, 1988).

https://doi.org/10.18011/bioeng.2023.v17.1197

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

2

According to Lee (1990), fuzzy modeling and control are

techniques for rigorously handling qualitative information.

Making inaccuracy and uncertainty powerful enough to

manipulate knowledge. Dealing with the relationship between

inputs and output, aggregating various process and control

parameters.

The Fuzzification module is the stage in which the system

inputs are and modeled by Fuzzy sets with their respective

domains. It is at this point where the inherent need for

specialists in the phenomenon to be modeled is justified

(Souza, 2010).

In this stage of the Fuzzy inference module, each Fuzzy

proposition is translated “mathematically” through the

techniques of Fuzzy logic, providing the Fuzzy output

(control) to be adopted by the controller, from each Fuzzy

input (Souza, 2010).

The Mamdani inference method proposes a binary relation

M between x and u to mathematically model the rule base.

Based on the max-min inference composition rule (Souza,

2010).

Belonging to the cichlid family, the Nile tilapia, O.

Niloticus, originates from the Nile River basin, in East Africa

and is widely disseminated in tropical and subtropical regions,

such as Israel, Southeast Asia, and the American continent

(Carvalho, 2006).

Considered one of the fish with the greatest potential for

aquaculture, tilapia has several essential characteristics: it is

precocious, fast-growing, has a large and varied food menu,

has the physiological capacity to adapt to different

environments and production systems, is disease-resistant,

tasty meat with low fat and calories and high fillet yield,

making it extremely suitable for industrialization and high

commercial value (Castagnolli, 1992; Schimittou, 1995; Ono

& Kubitza, 2003; Zimmermann & Fitzsimmons, 2004; Cyrino

& Conte, 2006).

Raising fish, first of all, is “creating water”, so great is the

interaction of this factor. To achieve success in raising fish

through any system, it is essential to take into account the

physical and chemical factors of the water, the main ones

being: temperature; Dissolved oxygen; hydrogen potential –

pH; transparency; ammonia, and nitrite (Codevasf, 2019).

Based on the context described above, this article seeks to

develop an algorithm embedded in Fuzzy mathematical

modeling and the Mamdani inference system for management

and control of water quality in Nile Tilapia fish farming, which

may later have its logic and results passed on for a specialist

mobile application that will be made available to these

breeders, aiming at the delivery of scientific information that

can collaborate with the best cultivation practices, thus also

improving their production and profitability.

Materials and methods

The first step was the definition of the input variables,

based on the limits determined by the systematic review of the

literature, limits that were adapted, codified, and treated,

allowing better adaptation and assertiveness in the logic of the

algorithm for inclusion in the tool (Mastelini & Mollo Neto

2022).

Of the many variables that influence water quality

identified, five of the most relevant were selected, according

to the authors (Codevasf, 2019; Coleção Senar 208, 2018;

Ematur-DF, 2009), these, as well as their limits and their

adapted codes are presented in the results topic. The second

step was the verification of all possibilities of existing

scenarios among all environment variables and their status.

Multiplying the five variables with the total status that each

one could assume within the scenarios; we arrive at a total of

432 possible situations (4 x 3 x 4 x 3 x 3). These scenarios

were identified with the help of the Microsoft Office Excel

tool.

For greater precision and assertiveness in this step, an

algorithm was developed in the C++ programming language

capable of relating the status of each variable, taking care to

never repeat the same code and/or variable within the same

scenario.

The report resulting from this algorithm, as well as from

the spreadsheet of the Microsoft Office Excel tool, made it

possible to identify the 432 possible scenarios between the

relationship of the variables and their status.

The third step was to compare the possible scenarios

(defined with the scenario combination algorithm) with the

output variables, which were created according to the water

quality and the linguistic terms used for the final classification

of the generated algorithm: “terrible, bad, good and great”.

Using the Microsoft Office Excel tool in the table with the

scenarios resulting from the algorithm, a new field was added,

called the output variable: linguistic term, which, in turn,

suffered the insertion of several conditional structures

(IF/ELSE). The Microsoft Office Excel tool has great

programming/development power and is also widely used for

this purpose.

The purpose of this STRING was to combine the statuses

of the scenarios previously created in the previous step with

the linguistic term for water quality output variables, such as:

terrible, bad, good, and excellent. For example: if scenario “X”

has any of the input environment variables with the status

“LETHAL”, its output variable would automatically receive

the linguistic term “VERY BAD”.; if scenario “Y” has a

critical input environment variable, with its status “ALERT”,

its output variable would automatically receive the linguistic

term “BAD”; if scenario “Z” has a non-critical input

environment variable, with “ALERT” status, its output

variable would automatically receive the linguistic term

“GOOD”; if scenario “W” has all its input environment

variables with status “IDEAL”, its output variable would

automatically receive the linguistic term “GREAT”. The

complete STRING used in this application is available in the

results topic.

To validate the results obtained with the application of

conditional structures in the Microsoft Office Excel tool, a

new algorithm was created, and implemented in the C++

programming language, also using programming logic and the

application of conditional structures. The logic of the

conditionals remained the same as applied in the Excel tool,

however, they were only adapted to the programming

language.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

3

Finally, all the previously generated content in the MatLab

tool was applied to build the input membership functions and

construct the output membership function of water quality and

its defined classification levels. It is possible to visualize the

methods described above by the flow diagram available in

Figure 1.

Figure 1. Diagram representing the Flow of methods.

By default, the tool creates the project with only one input

variable and one output variable (with four possible

situations), which was later added with four more input

variables, totaling five.

After creating the input variables in the MatLab tool, it was

time to create and configure the output variable (with four

different situations).

With the input and output pertinence definitions

configured, the rules were then created in MatLab, the Fuzzy

logic as well and the Mamdani inference.

The rules applied in the tool also follow the same ones

applied in the previous step (Microsoft Excel tool and C++

algorithm).

Then, in the next section, with the results obtained from

triggering the rules for all the scenarios obtained from the

input variables, it was possible to carry out the defuzzification

by obtaining numerical values for the outputs of each of the

scenarios and constructing the respective surfaces generated

by the interactions between input and output variables.

Results and discussion

As described in the topic materials and methods, in the first

stage, the definition of the variables of relevance, their limit

values, and expected results were adapted from the authors

(Codevasf, 2019; Coleção Senar 208, 2018; Ematur-DF, 2009)

and organized in tables, codes for these expected results were

also defined, enabling their maintenance by algorithms within

the system.

Once the steps were completed, the Fuzzy mathematical

modeling scheme with Mamdani inference was completed,

generating the project scheme, visible in Figure 2.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

4

Figure 2. Fuzzy modeling scheme with Mamdani inference.

To deal with the temperature variable, four different

linguistic terms or “status” were created: lethal, alert 1, ideal,

and alert 2, each with its respective code and limit value, as

shown in Table 1.

Table 1. Temperature variable and its limits.

CODE DESCRIPTION LIMIT VALUE

101 Lethal <= 15

102 Alert 1 >= 16 && < 25

103 Ideal >= 25 && < 31

104 Alert 2 >= 31

Source: Adapted by the Authors of Codevasf (2019); Coleção Senar 208 (2018) and Ematur-DF (2009).

.

These results in Table 1 allowed us to construct the input

membership functions for the temperature variable, which is

shown in Figure 3.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

5

Figure 3. MatLab temperature input variable.

As for the dissolved oxygen variable, three different

linguistic terms or “status” were created: lethal, ideal, and

alert, each with its respective code and limit value, as shown

in Table 2.

Table 2. Dissolved oxygen variable and its limits.

CODE DESCRIPTION LIMIT VALUE

201 Lethal < 3

202 Ideal >= 3 && < 7

203 Alert >= 7

Source: Adapted by the Authors from Codevasf (2019); Coleção Senar 208 (2018) and Ematur-DF (2009).

These results from Table 2 allowed the construction of the

input membership functions for the dissolved oxygen variable,

which is shown in Figure 4.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

6

Figure 4. MatLab dissolved oxygen input variable.

The pH variable had the creation of four different linguistic

terms or “status”: Lethal 1, alert 1, ideal, and lethal 2, each

with its respective code and limit value, as shown in Table 3.

These results from Table 3 allowed the construction of the

input membership functions for the pH variable, which is

shown in Figure 5.

Table 3. Variable pH and its limits.

CODE DESCRIPTION LIMIT VALUE

301 Lethal 1 < 4

302 Alert 1 >= 4 && < 6.5

303 Ideal >= 6.5 && < 9

304 Lethal 2 >= 9

Source: Adapted by the Authors from Codevasf (2019); Coleção Senar 208 (2018) and Ematur-DF (2009).

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

7

Figure 5. MatLab pH input variable.

The statuses created for the ammonia variable were three

linguistic terms or “status”: alert, ideal, and lethal, each with

its respective code and limit value, as shown in Table 4.

Table 4. Variable ammonia and its limits.

CODE DESCRIPTION LIMIT VALUE

401 Alert <= 0.2

402 Ideal > 0.2 && <= 0.5

403 Lethal > 0.5

Source: Adapted by the Author from Codevasf (2019); Coleção Senar 208 (2018) and Ematur-DF (2009).

These results from Table 4 allowed the construction of the

entry membership functions for the ammonia variable, which

is shown in Figure 6.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

8

Figure 6. MatLab ammonia input variable.

To deal with the transparency variable, three different

linguistic terms or “status” were created: high, average, and

low, each with their respective codes and threshold values, as

shown in Table 5.

Table 5. Variable transparency and its limits.

CODE DESCRIPTION LIMIT VALUE

501 High >= 0 && < 61

502 Average >= 61 && < 161

503 Low > 161

Source: Adapted by the Author from Codevasf (2019); Coleção Senar 208 (2018) and Ematur-DF (2009).

These results from Table 5 allowed the construction of the

input membership functions for the transparency variable,

which is shown in Figure 7.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

9

Figure 7. MatLab transparency input variable.

Next, the output membership function was modeled

(Figure 8), which reflects the experts' indications, with

responses for each of the projected scenarios found in the

literature (Codevasf (2019); Coleção Senar 208 (2018) and

Ematur -DF (2009).

Figure 8. MatLab output (Quality) variable.

Source: Adapted by the Author from Codevasf (2019); Coleção Senar 208 (2018) and Ematur-DF (2009).

In the identification stage of possible scenarios arising

from the relationship between variables and status, an

algorithm developed in C++ programming language was used,

visualized in the Algorithm 1.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

10

Algorithm 1. Identification of scenarios from the relationship between variables and status.

1. int main()

2. {

3. int num1, num2, num3, num4, num5;

4.

5. for (int a = 101; a <= 104; a++)

6. {

7. num1 = a;

8.

9. for (int b = 201; b <= 203; b++)

10. {

11. num2 = b;

12.

13. for (int c = 301; c <= 304; c++)

14. {

15. num3 = c;

16.

17. for (int d = 401; d <= 403; d++)

18. {

19. num4 = d;

20.

21. for (int e = 501; e <= 503; e++)

22. {

23. num5 = e;

24.

25. cout <<num1 <<" " <<num2 <<" " <<num3 <<" " <<num4 <<" " <<num5 << "\n";

26. }

27. }

28. }

29. }

30. }

31. }

The resulting scenarios obtained from the execution of this

algorithm show the combination of 432 possible scenarios

among the environment variables and their status. The next

step was the definition of the output variables with their

respective linguistic terms of water quality: terrible, bad, good,

and great, which were initially organized in the Microsoft

Office Excel tool, with the insertion of a conditional logic

STRING, capable of to verify the status of each variable of

each scenario and correlate it with its proper linguistic term.

The STRING can be seen below (String 1).

String 1. Maintenance of output variables and their linguistic

terms.=SE(OU(B4=101;C4=201;D4=301;D4=304;E4=403);"Terrible";SE(OU(B4=102;B4=104;E(OU(C4=203)));"Bad";SE(E(B

4=103;C4=202;E(OU(D4=302;D4=304;E(OU(E4=401;E(OU(F4=502;F4=503)))))));"Good";SE(E(B4=103;C4=202;D4=303;E4=

402;F4=501;F4=501);"Excellent"))))

Where:

• IF (temperature, oxygen, pH, or ammonia equal to lethal

1 or lethal 2) = "Poor Quality"

• IF (temperature equals alert 1 or alert 2 and oxygen equals

alert) = "Poor Quality"

• IF (temperature and oxygen equal to ideal and pH and

ammonia different from lethal and transparency equal to high

or medium or low) = "Good Quality"

• IF (temperature and oxygen and pH and ammonia equal

to ideal and transparency equal to high) = “Excellent Quality”

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

11

After the application of the conditional logic STRING

carried out in the Microsoft Office Excel tool, the same

conditional logic was applied in a new algorithm developed in

C++ language, to validate the output variables and their

linguistic terms, this algorithm can be seen below, in the

Algorithm 2.

Algorithm 2. Maintenance of output variables and their linguistic terms.

1. int main()

2. {

3. int counter=0, counter1, counter2, counter3, counter4, counter5, terrible=0, bad=0, good=0, excellent=0, other=0;

4. int codTemp, codOxi, codPh, codAmon, codTransp, WaterQuality;

5.

6. for (counter1 = 101; counter1 < 105; counter1++)

7. {

8. for (counter2 = 201; counter2 < 204; counter2++)

9. {

10. for (counter3 = 301; counter3 < 305; counter3++)

11. {

12. for (counter4 = 401; counter4 < 404; counter4++)

13. {

14. for (counter5 = 501; counter5 < 504; counter5++)

15. {

16. codTemp = counter1;

17. codOxi = counter2;

18. codPh = counter3;

19. codAmon = counter4;

20. codTransp = counter5;

21. counter++;

22. WaterQuality = -1;

23.

24. //case terrible

25. if ((codTemp == 101) || (codOxi == 201) || (codPh == 301) || (codPh

== 304) || (codAmon == 403))

26. {

27. WaterQuality = 0;

28. }

29.

30. //case bad

31. else if ((codTemp == 102 || codTemp == 104) && (codOxi == 202 ||

codOxi == 203) && (codPh == 302 || codPh == 303) && (codAmon != 403) && (codTransp == 501 || codTransp == 502 ||

codTransp == 503))

32. {

33. WaterQuality = 1;

34. }

35.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

12

36. //case good

37. else if ((codTemp == 103 && codOxi == 202) && (codPh == 302 ||

codPh == 303) && (codAmon != 403) && (codTransp == 501 || codTransp == 502 || codTransp == 503))

38. {

39. WaterQuality = 2;

40. }

41.

42. //case bad (2º option)

43. else if ((codTemp == 103 && codOxi == 203))

44. {

45. WaterQuality = 1;

46. }

47.

48. //case excellent

49. if ((codTemp == 103) && (codOxi == 202) && (codPh == 303) &&

(codAmon == 402) && (codTransp == 501))

50. {

51. WaterQuality = 3;

52. }

53.

54. cout << "\n" << codTemp << " - " << codOxi << " - " << codPh << "

- " << codAmon << " - " <<codTransp << " = ";

55.

56. switch (WaterQuality)

57. {

58. case 0:

59. terrible++;

60. cout << "Terrible!";

61. break;

62. case 1:

63. bad++;

64. cout << "Bad!";

65. break;

66. case 2:

67. good++;

68. cout << "Good!";

69. break;

70. case 3:

71. excellent++;

72. cout << "Excellent!";

73. break;

74. case -1:

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

13

75. other++;

76. cout << "------------ Other! ------------";

77. break;

78. }

79. }

80. }

81. }

82. }

83. }

84.

85. cout << "\n\n\nAmount of comparisons performed: " << counter;

86. cout << "\ nAmount Terrible: " << terrible;

87. cout << "\ nAmount Bad: " << bad;

88. cout << "\ nAmount Good: " << good;

89. cout << "\ nAmount Excellent: " << excellent;

90. cout << "\ nAmount Other: " << other <<"\n\n";

91.

92. system("pause");

93. }

With the application of the conditional structure on the

results of the water quality scenarios, both applied STRINGS

(Excel and algorithm), brought the same output values,

defined below:

• 360 scenarios with bad quality status;

• 60 scenarios with bad quality status;

• 11 scenarios with good quality status;

• 1 scenario with optimal quality status.

Finally, after inserting the previous procedures in the

MatLab tool and defining the rules, available below, it was

possible to perform the analysis.

• If lethal temperature, or lethal oxygen, or lethal pH 1, or

lethal ammonia

o Bad quality;

• If lethal temperature, or lethal oxygen, or lethal pH 2, or

lethal ammonia

o Bad quality;

• If ideal temperature, and ideal oxygen, and ideal pH, and

ideal ammonia, and high transparency

o Great quality;

• If ideal temperature, and ideal oxygen, and non-lethal pH

1, and non-lethal ammonia, and high, or medium, or low

transparency

o Good quality;

• If ideal temperature, and ideal oxygen, and non-lethal pH

2, and non-lethal ammonia, and high, or medium, or low

transparency

o Good quality;

• If temperature alert 1, and oxygen alert, and pH non-

lethal 1, and ammonia non-lethal, and transparency high, or

medium, or low

o Bad quality;

• If temperature alert 1, and oxygen alert, and non-lethal

pH 2, and non-lethal ammonia, and high, or medium, or low

transparency

o Bad quality;

• If temperature alert 2, and oxygen alert, and non-lethal

pH 1, and non-lethal ammonia, and high, or medium, or low

transparency

o Bad quality;

• If temperature alert 2, and oxygen alert, and non-lethal

pH 2, and non-lethal ammonia, and high, or medium, or low

transparency

o Bad quality;

With the schema assembled and finalized, it was possible

to visualize the 3D surface of the input variables and their

correlations, as shown in Figures 9 and 10.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

14

Figure 9. 3D Surfaces – part 01.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

15

Figure 10. 3D surfaces – part 02.

It can be seen in the graphs of the response surfaces of the

generated algorithm, Figures 9 and 10, that whenever any

confrontation with ammonia appears, the quality axis rises to

50 points, such as the confrontations of the variables

temperature x ammonia, oxygen x ammonia, pH x ammonia

and ammonia x transparency, indicating that it is very

important to strictly control this variable, as it can be deadly in

high concentrations.

In the case of comparisons between the variables

temperature x oxygen, temperature x PH, and temperature x

transparency, we can see that the quality ranges from surfaces

to a level of 22 to 24 points, which indicates that temperature

is also an important variable to be taken into account.

considered in the strictest control, but it depends on climatic

conditions and is more difficult to control in the reservoir,

which presents very slow thermal drift, requiring very large

investments for mitigation, which leads to trying to mitigate,

for example, the case of pH variable, oxygen Variable, and

transparency variable, more economically viable to control

through the use of pH control chemicals, oxygenators and

raising the reservoir water exchange flow to eliminate

transparency.

It is observed that in the case of the variables oxygen x pH

and oxygen x transparency., the emphasis goes to oxygen,

which is a factor to be controlled by employing aerators since

its range of interference with quality is around 19, 5 to 20

points.

Finally, the variables pH x transparency., toured the quality

in the range of 17.5 to 18 points, leading us to interpret that

both the pH and the transparency have less weight in the

classification of water quality, but they cannot cease to be

controlled, with the suggestion being to chemically control the

pH and increase the water exchange flow in the reservoir to

eliminate transparency issues.

It is still possible to highlight the importance attributed by

the arrangement of the rules to the pH variable because it has

two lethal statuses, followed later by the temperature variable,

the oxygen Variable, and the ammonia variable, with one

lethal status each, and finally, transparency, which does not

have lethal status, which is considered the one that least

impacts water quality in the constructed algorithm.

With all the parameterization of the input and output

variables, with the surfaces and rules assembled, Figures 11,

12, 13, and 14 show the basis of Fuzzy modeling and Mamdani

inference in action, in their respective results: poor quality, bad

quality, good quality, and great quality.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

16

Figure 11. Rules surface – poor water quality.

As seen in the quality column of Figure 11, the score of

17.4 responds to the linguistic term “poor water quality”.

Figure 12 shows, in the quality column, the score of 39.1,

which response to the linguistic term “poor water quality”.

Figure 12. Rule surface – poor water quality.

As seen in Figure 13, quality column, the score of 58.8

responds to the linguistic term “good water quality”.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

17

Figure 13. Rule surface – good water quality.

It is possible to observe in Figure 14 that, in the column

destined to quality, the value 73.0 represents the linguistic

term “great water quality”.

Figure 14. Rules surface – optimal water quality.

With the completion of the Fuzzy algorithm, it was

possible to observe that water quality, as well as its many

variables and different statuses, can generate several different

scenarios, each with its characteristics, which, among those

analyzed in this article, showed that, within of 432 possible

scenarios, only one of them was considered optimal for fish

farming of the tropical fish species Nile Tilapia.

Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197

18

Conclusions

With the results obtained, it was possible, in this article, to

develop an algorithm to be embedded in a mobile application

in the future with fuzzy mathematical modeling, with a

Mamdani inference system for the management and control of

water quality in Nile Tilapia fish farming, later, having its

logic and results passed on to a specialist mobile application

that will be made available to these creators, due to its

portability to the programming language, since it has a

structure of rules, aiming at the delivery of scientific

information that can collaborate with the best practices of

cultivation, thus also improving their production and

profitability, through decision support for fish farmers.

Acknowledgments

The authors wish to acknowledge the Postgraduate

Program in Agribusiness and Development (PGAD) of the

School of Sciences and Engineering of São Paulo State

University (UNESP), the Brazilian National Council for

Scientific and Technological Development (CNPq), for

support (Process #313339/2019-8 (MMN)).

References

Bassanezi, R. C. & Ferreira Jr., W. C. (1988). Equações Diferenciais com

aplicações, Editora HarbraLtda., São Paulo.

Bertalanffy, L. (1973). Teoria Geral dos Sistemas, Editora Vozes, Petrópolis.

Carvalho, E.D. (2006). Avaliação dos impactos da piscicultura em tanques-

rede nas represas dos grandes tributários do alto Paraná (Tietê e

Paranapanema): o pescado, a ictiofauna agregada e as condições

limnologias. Relatório Científico (FAPESP). Botucatu, SP. 46p.

Castagnolli, N. (1992). Criação de peixes de água doce. Jaboticabal: FUNEP.

189p.

Codevasf. (2019). Manual de Criação de Peixes em Tanques-Rede. Ministério

do Desenvolvimento Regional. 3º ed. Brasília – DF.

Coleção Senar 208. (2018). Piscicultura: Criação de Tilápias em Tanques-

Rede. Serviço Nacional de Aprendizagem Rural. Brasília – DF.

Cyrino, J.E. & Conte, L. (2006). Tilapicultura em Gaiolas: produção e

economia. In: José Eurico Possebon Cyrino e Elisabeth Criscuolo
Urbinati (Eds.). AquaCiência: Tópicos Especiais em Biologia Aquática e

Aqüicultura. Jaboticabal: Sociedade Brasileira de Aqüicultura e Biologia

Aquática, cap.12, p.151-171.

Emater-DF. (2009). Criação de Tilápias. Governo do Distrito Federal. 2º ed.

Brasília – DF.

Hughes, S.G. (1993). All-vegetable protein feeds. Feed International, v.14,

p.55-60.

Lee, C.C (1990). Fuzzy Logic in Control Systems: Fuzzy Logic Controller,
parts I and II. IEEE Trans. on Systems, Man, and Cybernetics, vol. 20, pp

404-435.

Mastelini, V., & Mollo Neto, M. (2022). INDICADORES DE QUALIDADE
DA ÁGUA PARA CRIAÇÃO DE TILÁPIAS-DO-NILO EM TANQUE-

REDE: UMA REVISÃO DAS PRÁTICAS DE ANÁLISES DE

CRIAÇÃO (2010 – 2021). RECIMA21 - Revista Científica
Multidisciplinar - ISSN 2675-6218, 3(12), e3122363.

https://doi.org/10.47820/recima21.v3i12.2363

Ono, E. A. & Kubitza, F. (2003). Cultivo de peixes em tanques-rede. 3ªed.

Jundiaí: Eduardo A. Ono, 112p.

Schmittou, H.R. (2003). Produção de peixes em alta densidade em tanques-

rede de pequeno volume. Tradução de Eduardo Ono. ASA - Associação
Americana de Soja. Editado por Silvio Romero Coelho, Mogiana

Alimentos S.A., 1995, 78p.ONO, E. A.; KUBITZA, F. Cultivo de peixes

em tanques-rede. 3ªed. Jundiaí: Eduardo A. Ono, 112p.

Sodré, U. (2007). Modelos Matemáticos. UEL, Londrina/PR.

Souza, O. N. (2010). Introdução à Teoria dos Conjuntos Fuzzy. Universidade

Estadual de Londrina - Centro de Ciências Exatas - Departamento de

Matemática, Londrina/PR.

Zadeh, L. (1988) - Fuzzy Logic - IEEE Computer, April, pp. 83-92.

Zimmermann, S. & Fitzsimmons, K. (2004). Tilapicultura intensive. In: José
Eurico Posseibon Cyrino, Elisabeth Criscuolo Urbinati, Débora Machado

Fracalosi, Newton Castagnolli (Editores), Tópicos especiais em

piscicultura de água doce tropical intensiva, São Paulo: TecArt, Cap.9, p.

239-266.

