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Abstract 

Being classified as one of the most important species for fish farming, the Nile tilapia 

has seen a huge increase in breeding worldwide. As in any cultural medium, dealing with 

the quality of the medium in which it is grown guarantees a large part of the success of 

the process, being of equal importance, in this case, the quality of the water. Taking 

advantage of existing mathematical models, humans were able to measure and design 

best practices in virtually all areas, pointing to its great functionality, this article used the 

Fuzzy logic mathematical model together with Mamdani inference to analyze water 

quality scenarios and their consequences, various environments, variables, capable of 

directly affecting fish farming. The purpose was to use the MatLab scientific software to 

cross these variables with the possible output scenarios, facilitating the producer's 

decision-making. As a result of the research, it was possible to develop an algorithm to 

be embedded in a mobile application in the future with fuzzy mathematical modeling, 

with a Mamdani inference system for management and control of water quality in Nile 

Tilapia fish farming. The same will be made available to these breeders, since it has a 

structure of rules, aiming at the delivery of scientific information that collaborates with 

the best cultivation practices, improving production and profitability, through decision 

support to fish farmers. 
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Introduction 

Used in a vast amount of fields of human activity, many of 

the existing practical problems require mathematical models, 

and sometimes, in very different situations, however, 

maintaining the same approach and philosophy (Sodré, 2007). 

A mathematical model is capable of being presented 

through a representation of a real system, it must represent a 

system and how changes occur in it (Bassanezi, 1988; 

Bertalanffy, 1973; Sodré, 2007). 

A model is a simplification of the real world or some way 

of working with it, however, the essential characteristics of 

this real-world must exist in this model, in such a way that it 

behaves in the same or similar way (Bassanezi, 1988; 

Bertalanffy, 1973; Sodré, 2007). 

The main objective of a model is that it allows 

understanding of the model itself more simply (Bassanezi, 

1988; Bertalanffy, 1973; Sodré, 2007). 

Fuzzy logic is based on the Fuzzy sets’ theory (Zadeh, 

1988). It differs from other traditional logic systems due to its 

characteristics and details. In this type of logic, exact 

reasoning corresponds to a limiting case of approximate 

reasoning, interpreted as a process of composing fuzzy 

relations. The truth value of a proposition in Fuzzy logic can 

be a Fuzzy subset of any partially ordered set, different from 

binary logic systems, where the truth value assumes only two 

values: true (1) or false (0). Using multivalued logic systems, 

the truth value can be an element of a finite set, an interval, or 

even a Boolean algebra. In fuzzy logic (where Fuzzy fits), the 

truth values are expressed linguistically (true, very true, not 

true, false, very false), where each term is interpreted as a 

Fuzzy subset of the interval (Zadeh, 1988).  
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According to Lee (1990), fuzzy modeling and control are 

techniques for rigorously handling qualitative information. 

Making inaccuracy and uncertainty powerful enough to 

manipulate knowledge. Dealing with the relationship between 

inputs and output, aggregating various process and control 

parameters. 

The Fuzzification module is the stage in which the system 

inputs are and modeled by Fuzzy sets with their respective 

domains. It is at this point where the inherent need for 

specialists in the phenomenon to be modeled is justified 

(Souza, 2010). 

In this stage of the Fuzzy inference module, each Fuzzy 

proposition is translated “mathematically” through the 

techniques of Fuzzy logic, providing the Fuzzy output 

(control) to be adopted by the controller, from each Fuzzy 

input (Souza, 2010). 

The Mamdani inference method proposes a binary relation 

M between x and u to mathematically model the rule base. 

Based on the max-min inference composition rule (Souza, 

2010). 

Belonging to the cichlid family, the Nile tilapia, O. 

Niloticus, originates from the Nile River basin, in East Africa 

and is widely disseminated in tropical and subtropical regions, 

such as Israel, Southeast Asia, and the American continent 

(Carvalho, 2006). 

Considered one of the fish with the greatest potential for 

aquaculture, tilapia has several essential characteristics: it is 

precocious, fast-growing, has a large and varied food menu, 

has the physiological capacity to adapt to different 

environments and production systems, is disease-resistant, 

tasty meat with low fat and calories and high fillet yield, 

making it extremely suitable for industrialization and high 

commercial value (Castagnolli, 1992; Schimittou, 1995; Ono 

& Kubitza, 2003; Zimmermann & Fitzsimmons, 2004; Cyrino 

& Conte, 2006). 

Raising fish, first of all, is “creating water”, so great is the 

interaction of this factor. To achieve success in raising fish 

through any system, it is essential to take into account the 

physical and chemical factors of the water, the main ones 

being: temperature; Dissolved oxygen; hydrogen potential – 

pH; transparency; ammonia, and nitrite (Codevasf, 2019). 

Based on the context described above, this article seeks to 

develop an algorithm embedded in Fuzzy mathematical 

modeling and the Mamdani inference system for management 

and control of water quality in Nile Tilapia fish farming, which 

may later have its logic and results passed on for a specialist 

mobile application that will be made available to these 

breeders, aiming at the delivery of scientific information that 

can collaborate with the best cultivation practices, thus also 

improving their production and profitability. 

Materials and methods 

The first step was the definition of the input variables, 

based on the limits determined by the systematic review of the 

literature, limits that were adapted, codified, and treated, 

allowing better adaptation and assertiveness in the logic of the 

algorithm for inclusion in the tool (Mastelini & Mollo Neto 

2022). 

Of the many variables that influence water quality 

identified, five of the most relevant were selected, according 

to the authors (Codevasf, 2019; Coleção Senar 208, 2018; 

Ematur-DF, 2009), these, as well as their limits and their 

adapted codes are presented in the results topic. The second 

step was the verification of all possibilities of existing 

scenarios among all environment variables and their status. 

Multiplying the five variables with the total status that each 

one could assume within the scenarios; we arrive at a total of 

432 possible situations (4 x 3 x 4 x 3 x 3). These scenarios 

were identified with the help of the Microsoft Office Excel 

tool. 

For greater precision and assertiveness in this step, an 

algorithm was developed in the C++ programming language 

capable of relating the status of each variable, taking care to 

never repeat the same code and/or variable within the same 

scenario. 

The report resulting from this algorithm, as well as from 

the spreadsheet of the Microsoft Office Excel tool, made it 

possible to identify the 432 possible scenarios between the 

relationship of the variables and their status. 

The third step was to compare the possible scenarios 

(defined with the scenario combination algorithm) with the 

output variables, which were created according to the water 

quality and the linguistic terms used for the final classification 

of the generated algorithm: “terrible, bad, good and great”. 

Using the Microsoft Office Excel tool in the table with the 

scenarios resulting from the algorithm, a new field was added, 

called the output variable: linguistic term, which, in turn, 

suffered the insertion of several conditional structures 

(IF/ELSE). The Microsoft Office Excel tool has great 

programming/development power and is also widely used for 

this purpose. 

The purpose of this STRING was to combine the statuses 

of the scenarios previously created in the previous step with 

the linguistic term for water quality output variables, such as: 

terrible, bad, good, and excellent. For example: if scenario “X” 

has any of the input environment variables with the status 

“LETHAL”, its output variable would automatically receive 

the linguistic term “VERY BAD”.; if scenario “Y” has a 

critical input environment variable, with its status “ALERT”, 

its output variable would automatically receive the linguistic 

term “BAD”; if scenario “Z” has a non-critical input 

environment variable, with “ALERT” status, its output 

variable would automatically receive the linguistic term 

“GOOD”; if scenario “W” has all its input environment 

variables with status “IDEAL”, its output variable would 

automatically receive the linguistic term “GREAT”. The 

complete STRING used in this application is available in the 

results topic. 

To validate the results obtained with the application of 

conditional structures in the Microsoft Office Excel tool, a 

new algorithm was created, and implemented in the C++ 

programming language, also using programming logic and the 

application of conditional structures. The logic of the 

conditionals remained the same as applied in the Excel tool, 

however, they were only adapted to the programming 

language. 
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Finally, all the previously generated content in the MatLab 

tool was applied to build the input membership functions and 

construct the output membership function of water quality and 

its defined classification levels. It is possible to visualize the 

methods described above by the flow diagram available in 

Figure 1.

 

Figure 1. Diagram representing the Flow of methods. 

 

 

By default, the tool creates the project with only one input 

variable and one output variable (with four possible 

situations), which was later added with four more input 

variables, totaling five. 

After creating the input variables in the MatLab tool, it was 

time to create and configure the output variable (with four 

different situations). 

With the input and output pertinence definitions 

configured, the rules were then created in MatLab, the Fuzzy 

logic as well and the Mamdani inference. 

The rules applied in the tool also follow the same ones 

applied in the previous step (Microsoft Excel tool and C++ 

algorithm). 

Then, in the next section, with the results obtained from 

triggering the rules for all the scenarios obtained from the 

input variables, it was possible to carry out the defuzzification 

by obtaining numerical values for the outputs of each of the 

scenarios and constructing the respective surfaces generated 

by the interactions between input and output variables. 

Results and discussion 

As described in the topic materials and methods, in the first 

stage, the definition of the variables of relevance, their limit 

values, and expected results were adapted from the authors 

(Codevasf, 2019; Coleção Senar 208, 2018; Ematur-DF, 2009) 

and organized in tables, codes for these expected results were 

also defined, enabling their maintenance by algorithms within 

the system. 

Once the steps were completed, the Fuzzy mathematical 

modeling scheme with Mamdani inference was completed, 

generating the project scheme, visible in Figure 2. 
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Figure 2. Fuzzy modeling scheme with Mamdani inference. 

 

To deal with the temperature variable, four different 

linguistic terms or “status” were created: lethal, alert 1, ideal, 

and alert 2, each with its respective code and limit value, as 

shown in Table 1. 

 

Table 1. Temperature variable and its limits. 

CODE  DESCRIPTION  LIMIT VALUE 

101 Lethal <= 15 

102 Alert 1 >= 16 && < 25 

103 Ideal >= 25 && < 31 

104 Alert 2 >= 31 

Source: Adapted by the Authors of Codevasf (2019); Coleção Senar 208 (2018) and Ematur-DF (2009). 

.

These results in Table 1 allowed us to construct the input 

membership functions for the temperature variable, which is 

shown in Figure 3. 
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Figure 3. MatLab temperature input variable. 

 

As for the dissolved oxygen variable, three different 

linguistic terms or “status” were created: lethal, ideal, and 

alert, each with its respective code and limit value, as shown 

in Table 2. 

 

Table 2. Dissolved oxygen variable and its limits. 

CODE  DESCRIPTION  LIMIT VALUE 

201 Lethal < 3 

202 Ideal >= 3 && < 7 

203 Alert >= 7 

Source: Adapted by the Authors from Codevasf (2019); Coleção Senar 208 (2018) and Ematur-DF (2009). 

These results from Table 2 allowed the construction of the 

input membership functions for the dissolved oxygen variable, 

which is shown in Figure 4.

 

 

 

 

 

 

 

 



Mastelini et al. Brazilian Journal of Biosystems Engineering (2023), 17 1197 
 

6 

 

 

Figure 4. MatLab dissolved oxygen input variable. 

 

The pH variable had the creation of four different linguistic 

terms or “status”: Lethal 1, alert 1, ideal, and lethal 2, each 

with its respective code and limit value, as shown in Table 3. 

These results from Table 3 allowed the construction of the 

input membership functions for the pH variable, which is 

shown in Figure 5. 

 

Table 3. Variable pH and its limits. 

CODE  DESCRIPTION  LIMIT VALUE 

301 Lethal 1 < 4 

302 Alert 1 >= 4 && < 6.5 

303 Ideal >= 6.5 && < 9 

304 Lethal 2 >= 9 

Source: Adapted by the Authors from Codevasf (2019); Coleção Senar 208 (2018) and Ematur-DF (2009). 
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Figure 5. MatLab pH input variable. 

The statuses created for the ammonia variable were three 

linguistic terms or “status”: alert, ideal, and lethal, each with 

its respective code and limit value, as shown in Table 4. 

 

 

 

Table 4. Variable ammonia and its limits. 

CODE  DESCRIPTION  LIMIT VALUE 

401 Alert <= 0.2 

402 Ideal > 0.2 && <= 0.5 

403 Lethal > 0.5 

Source: Adapted by the Author from Codevasf (2019); Coleção Senar 208 (2018) and Ematur-DF (2009). 

These results from Table 4 allowed the construction of the 

entry membership functions for the ammonia variable, which 

is shown in Figure 6.
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Figure 6. MatLab ammonia input variable. 

 

To deal with the transparency variable, three different 

linguistic terms or “status” were created: high, average, and 

low, each with their respective codes and threshold values, as 

shown in Table 5. 

 

 

 

Table 5. Variable transparency and its limits. 

CODE  DESCRIPTION  LIMIT VALUE 

501 High >= 0 && < 61 

502 Average >= 61 && < 161 

503 Low > 161 

Source: Adapted by the Author from Codevasf (2019); Coleção Senar 208 (2018) and Ematur-DF (2009). 

 

These results from Table 5 allowed the construction of the 

input membership functions for the transparency variable, 

which is shown in Figure 7.
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Figure 7. MatLab transparency input variable. 

Next, the output membership function was modeled 

(Figure 8), which reflects the experts' indications, with 

responses for each of the projected scenarios found in the 

literature (Codevasf (2019); Coleção Senar 208 (2018) and 

Ematur -DF (2009). 

 

 

 

Figure 8. MatLab output (Quality) variable. 

Source: Adapted by the Author from Codevasf (2019); Coleção Senar 208 (2018) and Ematur-DF (2009). 

 

In the identification stage of possible scenarios arising 

from the relationship between variables and status, an 

algorithm developed in C++ programming language was used, 

visualized in the Algorithm 1. 
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Algorithm 1. Identification of scenarios from the relationship between variables and status. 

1. int main() 

2. { 

3.     int num1, num2, num3, num4, num5; 

4.  

5.     for (int a = 101; a <= 104; a++) 

6.     { 

7.         num1 = a; 

8.  

9.         for (int b = 201; b <= 203; b++) 

10.         { 

11.             num2 = b; 

12.  

13.             for (int c = 301; c <= 304; c++) 

14.             { 

15.                 num3 = c; 

16.  

17.                 for (int d = 401; d <= 403; d++) 

18.                 { 

19.                     num4 = d; 

20.  

21.                     for (int e = 501; e <= 503; e++) 

22.                     { 

23.                         num5 = e;         

24.   

25.                         cout <<num1 <<" " <<num2 <<" " <<num3 <<" " <<num4 <<" " <<num5 << "\n"; 

26.                     } 

27.                 } 

28.             } 

29.         } 

30.     } 

31. } 

 

The resulting scenarios obtained from the execution of this 

algorithm show the combination of 432 possible scenarios 

among the environment variables and their status. The next 

step was the definition of the output variables with their 

respective linguistic terms of water quality: terrible, bad, good, 

and great, which were initially organized in the Microsoft 

Office Excel tool, with the insertion of a conditional logic 

STRING, capable of to verify the status of each variable of 

each scenario and correlate it with its proper linguistic term. 

The STRING can be seen below (String 1). 

 

String 1. Maintenance of output variables and their linguistic 

terms.=SE(OU(B4=101;C4=201;D4=301;D4=304;E4=403);"Terrible";SE(OU(B4=102;B4=104;E(OU(C4=203)));"Bad";SE(E(B

4=103;C4=202;E(OU(D4=302;D4=304;E(OU(E4=401;E(OU(F4=502;F4=503)))))));"Good";SE(E(B4=103;C4=202;D4=303;E4=

402;F4=501;F4=501);"Excellent")))) 

 

Where: 

• IF (temperature, oxygen, pH, or ammonia equal to lethal 

1 or lethal 2) = "Poor Quality" 

• IF (temperature equals alert 1 or alert 2 and oxygen equals 

alert) = "Poor Quality" 

• IF (temperature and oxygen equal to ideal and pH and 

ammonia different from lethal and transparency equal to high 

or medium or low) = "Good Quality" 

• IF (temperature and oxygen and pH and ammonia equal 

to ideal and transparency equal to high) = “Excellent Quality” 
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After the application of the conditional logic STRING 

carried out in the Microsoft Office Excel tool, the same 

conditional logic was applied in a new algorithm developed in 

C++ language, to validate the output variables and their 

linguistic terms, this algorithm can be seen below, in the 

Algorithm 2.

 

Algorithm 2. Maintenance of output variables and their linguistic terms. 

1. int main() 

2. { 

3.  int counter=0, counter1, counter2, counter3, counter4, counter5, terrible=0, bad=0, good=0, excellent=0, other=0; 

4.  int codTemp, codOxi, codPh, codAmon, codTransp, WaterQuality; 

5.   

6.  for (counter1 = 101; counter1 < 105; counter1++) 

7.  {    

8.   for (counter2 = 201; counter2 < 204; counter2++) 

9.   { 

10.    for (counter3 = 301; counter3 < 305; counter3++)  

11.    { 

12.     for (counter4 = 401; counter4 < 404; counter4++) 

13.     { 

14.      for (counter5 = 501; counter5 < 504; counter5++) 

15.      { 

16.       codTemp = counter1; 

17.       codOxi = counter2; 

18.       codPh = counter3; 

19.       codAmon = counter4; 

20.       codTransp = counter5;  

21.       counter++; 

22.       WaterQuality = -1; 

23.        

24.       //case terrible 

25.       if ((codTemp == 101) || (codOxi == 201) || (codPh == 301) || (codPh 

== 304) || (codAmon == 403)) 

26.       { 

27.        WaterQuality = 0; 

28.       } 

29.        

30.       //case bad 

31.       else if ((codTemp == 102 || codTemp == 104) && (codOxi == 202 || 

codOxi == 203) && (codPh == 302 || codPh == 303) && (codAmon != 403) && (codTransp == 501 ||  codTransp == 502 || 

codTransp == 503)) 

32.       { 

33.        WaterQuality = 1; 

34.       } 

35.        
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36.       //case good 

37.       else if ((codTemp == 103 && codOxi == 202) && (codPh == 302 || 

codPh == 303) && (codAmon != 403) && (codTransp == 501 ||  codTransp == 502 || codTransp == 503)) 

38.       { 

39.        WaterQuality = 2; 

40.       } 

41.        

42.       //case bad (2º option) 

43.       else if ((codTemp == 103 && codOxi == 203)) 

44.       { 

45.        WaterQuality = 1; 

46.       } 

47.        

48.       //case excellent 

49.       if ((codTemp == 103) && (codOxi == 202) && (codPh == 303) && 

(codAmon == 402) && (codTransp == 501)) 

50.       { 

51.        WaterQuality = 3; 

52.       } 

53.        

54.       cout << "\n" << codTemp << " - " << codOxi << " - " << codPh << " 

- " << codAmon << " - " <<codTransp << " = "; 

55.         

56.       switch (WaterQuality) 

57.       { 

58.        case 0: 

59.         terrible++; 

60.         cout << "Terrible!"; 

61.         break; 

62.        case 1: 

63.         bad++; 

64.         cout << "Bad!"; 

65.         break; 

66.        case 2: 

67.         good++; 

68.         cout << "Good!"; 

69.         break; 

70.        case 3: 

71.         excellent++; 

72.         cout << "Excellent!"; 

73.         break; 

74.        case -1: 
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75.         other++; 

76.         cout << "------------ Other! ------------"; 

77.         break; 

78.       } 

79.      } 

80.     } 

81.    } 

82.   } 

83.  } 

84.   

85.  cout << "\n\n\nAmount of comparisons performed: " << counter; 

86.  cout << "\ nAmount Terrible: " << terrible; 

87.  cout << "\ nAmount Bad: " << bad; 

88.  cout << "\ nAmount Good: " << good; 

89.  cout << "\ nAmount Excellent: " << excellent; 

90.  cout << "\ nAmount Other: " << other <<"\n\n"; 

91.   

92.  system("pause"); 

93. } 

 

With the application of the conditional structure on the 

results of the water quality scenarios, both applied STRINGS 

(Excel and algorithm), brought the same output values, 

defined below: 

• 360 scenarios with bad quality status; 

• 60 scenarios with bad quality status; 

• 11 scenarios with good quality status; 

• 1 scenario with optimal quality status. 

Finally, after inserting the previous procedures in the 

MatLab tool and defining the rules, available below, it was 

possible to perform the analysis. 

 

• If lethal temperature, or lethal oxygen, or lethal pH 1, or 

lethal ammonia 

o Bad quality; 

• If lethal temperature, or lethal oxygen, or lethal pH 2, or 

lethal ammonia 

o Bad quality; 

• If ideal temperature, and ideal oxygen, and ideal pH, and 

ideal ammonia, and high transparency 

o Great quality; 

• If ideal temperature, and ideal oxygen, and non-lethal pH 

1, and non-lethal ammonia, and high, or medium, or low 

transparency 

o Good quality; 

• If ideal temperature, and ideal oxygen, and non-lethal pH 

2, and non-lethal ammonia, and high, or medium, or low 

transparency 

o Good quality; 

• If temperature alert 1, and oxygen alert, and pH non-

lethal 1, and ammonia non-lethal, and transparency high, or 

medium, or low 

o Bad quality; 

• If temperature alert 1, and oxygen alert, and non-lethal 

pH 2, and non-lethal ammonia, and high, or medium, or low 

transparency 

o Bad quality; 

• If temperature alert 2, and oxygen alert, and non-lethal 

pH 1, and non-lethal ammonia, and high, or medium, or low 

transparency 

o Bad quality; 

• If temperature alert 2, and oxygen alert, and non-lethal 

pH 2, and non-lethal ammonia, and high, or medium, or low 

transparency 

o Bad quality; 

With the schema assembled and finalized, it was possible 

to visualize the 3D surface of the input variables and their 

correlations, as shown in Figures 9 and 10. 
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Figure 9. 3D Surfaces – part 01. 
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Figure 10. 3D surfaces – part 02. 

 

It can be seen in the graphs of the response surfaces of the 

generated algorithm, Figures 9 and 10, that whenever any 

confrontation with ammonia appears, the quality axis rises to 

50 points, such as the confrontations of the variables 

temperature x ammonia, oxygen x ammonia, pH x ammonia 

and ammonia x transparency, indicating that it is very 

important to strictly control this variable, as it can be deadly in 

high concentrations.  

In the case of comparisons between the variables 

temperature x oxygen, temperature x PH, and temperature x 

transparency, we can see that the quality ranges from surfaces 

to a level of 22 to 24 points, which indicates that temperature 

is also an important variable to be taken into account. 

considered in the strictest control, but it depends on climatic 

conditions and is more difficult to control in the reservoir, 

which presents very slow thermal drift, requiring very large 

investments for mitigation, which leads to trying to mitigate, 

for example, the case of pH variable, oxygen Variable, and 

transparency variable, more economically viable to control 

through the use of pH control chemicals, oxygenators and 

raising the reservoir water exchange flow to eliminate 

transparency.  

It is observed that in the case of the variables oxygen x pH 

and oxygen x transparency., the emphasis goes to oxygen, 

which is a factor to be controlled by employing aerators since 

its range of interference with quality is around 19, 5 to 20 

points. 

Finally, the variables pH x transparency., toured the quality 

in the range of 17.5 to 18 points, leading us to interpret that 

both the pH and the transparency have less weight in the 

classification of water quality, but they cannot cease to be 

controlled, with the suggestion being to chemically control the 

pH and increase the water exchange flow in the reservoir to 

eliminate transparency issues.  

It is still possible to highlight the importance attributed by 

the arrangement of the rules to the pH variable because it has 

two lethal statuses, followed later by the temperature variable, 

the oxygen Variable, and the ammonia variable, with one 

lethal status each, and finally, transparency, which does not 

have lethal status, which is considered the one that least 

impacts water quality in the constructed algorithm.  

With all the parameterization of the input and output 

variables, with the surfaces and rules assembled, Figures 11, 

12, 13, and 14 show the basis of Fuzzy modeling and Mamdani 

inference in action, in their respective results: poor quality, bad 

quality, good quality, and great quality.
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Figure 11. Rules surface – poor water quality. 

As seen in the quality column of Figure 11, the score of 

17.4 responds to the linguistic term “poor water quality”. 

 

Figure 12 shows, in the quality column, the score of 39.1, 

which response to the linguistic term “poor water quality”.

 

Figure 12. Rule surface – poor water quality. 

As seen in Figure 13, quality column, the score of 58.8 

responds to the linguistic term “good water quality”.
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Figure 13. Rule surface – good water quality. 

It is possible to observe in Figure 14 that, in the column 

destined to quality, the value 73.0 represents the linguistic 

term “great water quality”.

 

Figure 14. Rules surface – optimal water quality. 

With the completion of the Fuzzy algorithm, it was 

possible to observe that water quality, as well as its many 

variables and different statuses, can generate several different 

scenarios, each with its characteristics, which, among those 

analyzed in this article, showed that, within of 432 possible 

scenarios, only one of them was considered optimal for fish 

farming of the tropical fish species Nile Tilapia. 
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Conclusions 

With the results obtained, it was possible, in this article, to 

develop an algorithm to be embedded in a mobile application 

in the future with fuzzy mathematical modeling, with a 

Mamdani inference system for the management and control of 

water quality in Nile Tilapia fish farming, later, having its 

logic and results passed on to a specialist mobile application 

that will be made available to these creators, due to its 

portability to the programming language, since it has a 

structure of rules, aiming at the delivery of scientific 

information that can collaborate with the best practices of 

cultivation, thus also improving their production and 

profitability, through decision support for fish farmers. 
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