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Abstract 

Monitoring the quality of irrigation water can help in the maintenance of filters and 

irrigation systems, avoiding clogs and uniformity problems. The objective of this work 

was, thus, to evaluate the performance of sensor modules for monitoring irrigation water 

quality variables. For that, three sensors were evaluated, and their performance was rated 

from the adjustment of calibration equations, obtained through linear regression analysis 

(yi = b0 + b1xi + εi), using the ordinary least squares method (OLS) to estimate its 

parameters (β0 and β1). The first sensor evaluated was the Ph4502c for pH measurement. 

Direct methodology was used, using standard pH solutions (1.79; 4.5; 6.88; 12.13; and 

13.99) and an electrode type BNC probe. The second evaluated sensor was turbidity 

model TSW30. To evaluate the total dissolved solids (TDS) sensor, the direct method 

was applied, using solutions with electrical conductivity of 0.50, 1.0, and 2.0 dS m-1. To 

investigate the assumptions of independence, homoscedasticity, and normality of the 

residuals of the linear regression models, the Durbin-Watson, Breusch-Pagan, and 

Kolmogorov-Smirnov tests were respectively used. In the evaluation of the statistical 

performance, the indicators of the root-mean-square error, coefficient of determination, 

correlation coefficient, confidence index, and index of agreement were adopted. The 

ordinary least squares method did not produce the best unbiased linear estimators for the 

calibration equations of the pH, turbidity, and TDS sensors, due to the violation of the 

regression assumptions. The adjustments showed good accuracy for water quality 

assessment, according to high performance statistics and models classified as 

‘Excellent’. 
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Introduction 

Water quality is directly related to its various components 

and concentrations in such a way that the classification of 

purity and potability is based on the amount of these elements 

(Brasil, 2014). In irrigated agriculture, the main parameters 

evaluated are the physical-chemical and biological variables. 

Thus, the main attributes analysed are pH, total dissolved 

solids (TDS), electrical conductivity, and ions (Almeida, 

2010). 

Water adequacy for irrigation purposes is still very 

subjective, however, it is important to evaluate and identify 

some parameters that may produce undesirable effects on the 

water, soil, and plant relationship (Sousa et al., 2001). Trentin 

and Souza (2006) emphasized the importance of analysing 

physicochemical characteristics, sanitary water quality, crop 

tolerance, soil characteristics, local climate, and irrigation 

management.  

The methodologies for analysing water quality are diverse, 

either in the laboratory, using a previously collected sample, 

or using in situ devices for immediate data collection or 

monitoring (Leal Júnior et al., 2020). According to Pule et al. 

(2017), the adoption of sensors to the detriment of 

conventional collection methods has been highlighted in the 

most different means. In this respect, automatic data 

acquisition makes the course of the best management strategy. 

Based on the above, the objective of this work was to 

evaluate the performance of sensor modules for monitoring 

irrigation water quality variables. 
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Materials and methods 

The experiment was carried out at the Hydraulics and 

Irrigation Laboratory of the Federal University of Ceará, Pici 

Campus, city of Fortaleza, state of Ceará, Brazil, under 

geographic coordinates 3° 45' latitude S, 38° 33' longitude W 

and mean altitude of 19 m.  

Three sensors were evaluated in order to monitor irrigation 

water quality. To measure the pH, a sensor module Ph4502c, 

manufactured by Diymore, and an electrode type BNC probe 

were used. To quantify the turbidity, the sensor TZT teng 

Official Store, model TSW30, was adopted. In the 

quantification of total dissolved solids (TDS), a sensor model 

KS0429, from the manufacturer Keyestudio, was used to 

designate the quantity of milligrams of soluble solids in one 

litre of water. 

For platform prototyping, Arduino Nano V3.0 hardware 

model and IDE (Integrated Development Environment) 

software were adopted. The construction of the 

multiparametric probe containing the components and the 

three water quality sensors cost about US$ 42.82. Figure 1 

shows the probe prototyping scheme.

 

  
Figure 1. Schematic of multiparametric probe components. 

 

In the calibration of the sensor module Ph4502c, the direct 

methodology was applied, using standard pH solutions, 

already known (pH=1.79; pH=4.5; pH=6.88; pH=12.13; and 

pH=13 .99), quantified by bench pH meter. For the turbidity 

sensor, the indirect method was applied, using a portable 

digital turbidimeter model Digimed DM-TU, previously 

calibrated in a Nephelometric Turbidity Unit (NTU) and with 

water solutions plus soil in different concentrations (1.3; 

158.0; 255.4; 315.2; 427.4; 571.5; 632.8; and 713.0 NTU). To 

calibrate the total dissolved solids (TDS) sensor, the direct 

method was applied, using solutions with electrical 

conductivity of 0.50; 1.0; and 2.0 dS m-1.  

Most models applied to variables in the agricultural 

sciences are based on the structure response = structure + error 

(Mueller et al., 2001). In this sense, the calibration equations 

adopted the simple linear regression model, from which the 

coefficients were estimated by the ordinary least squares 

method (Equation 1). Adopting the method for estimating the 

regression parameters (b0 and b1), the modification is 

observed in Equation 2. 

yi =  β0 +  β1xi +  εi                                                                                                                                                  

(1) 

yi =  b0 +  b1xi +  εi                                                                                                                                                  

(2) 

Where: 

yi = predicted value for the i-th observation of the 

dependent variable y; 

xi = value of the i-th observation of the independent 

variable x; 

β0 = intercept parameter of the equation; 

β1 = slope parameter of the equation; and 

εi = random error in y for the i-th observation; 

Regarding the independence of the regression residuals, 

the Durbin-Watson test was used to verify whether a 

sequential series of detail values is or is not serially correlated 

(Luo et al., 1999). To verify the problem of absence of 

homoscedasticity, the Breusch-Pagan test was adopted, which 

tests the null hypothesis of homoscedasticity against the 

alternative hypothesis of heteroscedasticity (Carvalho et al., 

2017). For the normality assumption, the Kolmogorov-

Smirnov test is the most used (Assis et al., 1996), so that the 

empirical probabilities of a variable are compared with the 

theoretical ones estimated by the distribution function that is 

being tested (Franscisco et al., 2016).  

All tests were verified from the analysis of residuals and 

were submitted to 5% of significance, which is the 

significance of the regression model given by Student's t-test 

of significance for the (a) linear and (b) angular coefficients. 

The significance of the adjustment equation was given by 

applying the Student's t-test of significance for the (b) angular 

and (a) linear coefficients. Hypothesis b, a, and null (Ho) do 

not differ statistically from zero, being rejected when the 

calculated t-value is greater than the tabulated critical value 

(t0), considering n-2 degrees of freedom and 5% significance. 
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To evaluate the statistical performance of the models, it 

was used: root-mean-square error (RMSE) indicators (Fares et 

al., 2011), correlation coefficient (r), coefficient of 

determination (R²), Willmott (1985) index of agreement (d), 

and the confidence index (c) (Camargo and Sentelhas, 1997). 

The RMSE indicators, r, d, and c were calculated according to 

Equations 3, 4, 5, and 6, respectively. 

REQM = [
∑ (Pi-Oi)

2n
i=1

n
]

1

2
    

                               (3) 

 

r = 
[∑ Pi(Oi- O̅)

n

i=1
]

[∑ (Oi- O̅)² ∑ (Pi- P̅)n
i=1

n

i=1
]

1
2

   

       (4) 

 

d = 1- 
∑ (Pi-Oi)²n

i=1

∑ (|Pi- O̅|+|Oi- O̅|)
2

n

i=1

    

        (5) 

 

c = r*d     

                               

   (6) 

Where: 

Pi - values estimated by the models; 

Hi - observed values; and 

𝑂 - mean of observed values. 

The accuracy of the fitted linear models was qualitatively 

classified according to the confidence index (Table 1), which 

ranges from 0 (no agreement) to 1 (perfect agreement between 

the data). 

 

Table 1 - Performance classification according to the value of coefficient ‘c’. 

Value of ‘c’ Performance 

> 0.85 Excellent 

0.76 a 0.85 Very good 

0.66 a 0.75 Good 

0.61 a 0.65 Median 

0.51 a 0.60 Sufferable 

0.41 a 0.50 Bad 

≤ 0.40 Terrible 

Source: Camargo and Sentelhas (1997). 

 

Alluding to the agreement coefficient ‘d’, Walker et al. 

(2004) elucidates that values close to zero mean that there is 

no agreement between the data obtained, whilst close to 1 

indicates a perfect agreement between them.  

The analyses were performed using Microsoft® Excel 2019 

spreadsheets and the R software, version 4.1.1, more 

specifically, the ‘lmtest’ and ‘MASS’ libraries, in order to 

perform the hypothesis tests. 

 

Results and discussion 

Analysing the calibration tests, through the linear 

regression curves of the models, as well as the pH, it is 

possible to see the behavior of the data tending to a decreasing 

linear adjustment (Figure 1a), evidencing a reduction of the 

voltage values as the solution pH increases. The turbidity also 

follows the same behavior, showing a reduction in tension 

values as it increases (Figure 1b). However, for TDS, the data 

tend to have an increasing linear fit, displaying a gain in 

tension as the total dissolved solids in the solution increase 

(Figure 1c). 
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Figure 1. Model regression curves (ŷ) of the relationship between pH, total dissolved solids, and Turbidity values with voltage (x, 

volts).

The coefficients of determination (R2) showed values of 

0.9342, 0.9401, and 0.8335 in the regression curves for pH, 

turbidity, and TDS, respectively. These values are close to 1, 

thus showing a good correlation between the results obtained 

by the standard method and those measured by the sensors. 

Table 2 presents the results obtained in the t-test for the (a) 

linear and (b) angular coefficients of the regressions for all 

investigated sensors, making it possible to verify that all the 

estimated coefficients showed statistical significance.

 

Table 2 - Significance t-test statistics for coefficients ‘b’ and ‘a’. 

Sensor Student's t-test statistics 

a b 

pH 29.1250* -26.1044* 

TDS -3.4783* 11.8405* 

Turbidity 43.7981* -34.9831* 

* Significant at 5% significance. 

.

The evaluation of the calibration models by the Durbin-

Watson, Breusch-Pagan, and Kolmogorov-Smirnov tests, in 

the verification of the premises of independence, homogeneity 

of variance, and normality of the residues, for the pH, 

turbidity, and TDS sensors, are shown in the Table 3. 

 

 

Table 3 - Statistics of Durbin-Watson, Breusch-Pagan, and Kolmogorov-Smirnov tests, as well as sample size (n) of simple linear 

calibration equations. 

Sensor Durbin-Watson Breusch-Pagan Kolmogorov-Smirnov n 

pH 0.3755NS 1.1921* 0.1290* 50 

Turbidity 0.3932NS 12.3608NS 0.09123* 80 

TDS 0.2936NS 11.1543NS 0.3111NS 30 

*: significant at the 5% level, according to Student's t-test. NS: not significant. 
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It was found that the premise of absence of residual 

autocorrelation for the calibration equations of the 

investigated sensors was not met, according to the Durbin-

Watson test. However, the presence of correlation between the 

errors was already expected, which was justified by the way in 

which the calibration data was collected, since, in the same 

sample (solutions) the sensors performed ten readings, 

configuring a procedure with repeated measurements in time, 

which, consequently, provides correlated information. 

According to Kutner et al. (2004), when there is dependence 

between the error terms, this leads to unbiased estimation 

coefficients. Nevertheless, confidence intervals and 

significance tests are not completely reliable, since the error 

variance is incorrect. 

Regarding heterogeneity, variance of error terms was 

observed for the turbidity and TDS adjustments, and not 

normality for the latter. According to Figueiredo Filho et al. 

(2011), one of the causes of heteroscedasticity is when there 

are measurement errors in the independent variables. The 

Gauss-Markov theorem reports that, under the veracity of the 

assumptions, the estimators obtained by the ordinary least 

squares method will be the best linear unbiased prediction 

(BLUP) (Figueiredo Filho et al., 2011). Thus, it is possible to 

infer that, for the calibration equations of the pH, turbidity, and 

TDS sensors, the ordinary least squares method did not 

produce the best linear unbiased prediction, since at least one 

premise was not met. 

It is important to highlight that, among the evaluated 

meters, only the sensor module Ph4502c that has automatic 

compensation for the ambient temperature did not provide the 

relaxation of the premises of heterogeneity of variance and 

normality of the residuals. According to Pratami et al. (2020), 

generally, the temperature of the sample interferes with the pH 

reading, with an increase in pH as the temperature rises.  

For the turbidity measurements, part of the temporal 

dispersion of the readings is due to the soil + water solutions 

used for sensor calibration, as the turbidity is reduced while 

the suspended material is deposited at the base of the 

container. Regarding TDS, Rietmanm et al. (1985) elucidates 

that the speed of ion movement is greater when the water is 

hotter, thus increasing the apparent conductivity. 

It was observed that, in the calibration of the sensors (Table 

4), the root-mean-square error (RMSE) values for all sensors 

indicate very poor accuracy (RMSE ≥ 0.1), according to the 

classification by Fares et al. (2011), displaying poor sensor 

accuracy in data acquisition. However, the confidence indexes 

(c) for both sensors were considered optimal, showing values 

above 0.85, according to the classification by Camargo and 

Sentelhas (1997), revealing high sensor reliability. 

 

Table 4 - Performance statistics of the proposed linear models. 

Sensor RMSE R² d r c Performance 

pH 1,1750 0,9342 0,9827 0,9827 0,9500 Excellent 

TDS 165,1435 0,8335 0,9538 0,9538 0,8700 Excellent 

Turbidity 56,9850 0,9401 0,9843 0,9843 0,9500 Excellent 

RMSE: root-mean-square error; c: confidence index; d: index of agreement. 
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Likewise, the indexes of agreement (d) showed values 

close to 1.0, evidencing perfect agreement between the values. 

It is worth recalling that, according to Walker et al. (2004), 

values close to 1 mean that there is perfect agreement, while 

close to zero indicated no agreement between the obtained 

data. 

It was found that the calibration equations for the 

hydrogenic potential and turbidity showed similar 

performance, according to the coefficient of determination 

(R²) of 0.9342 and 0.9401, respectively. Concerning the 

confidence index ‘c’, in general, the adjustments offered 

similar performance, classified as ‘Excellent’. 

 

Conclusions 

For the calibration equations of the pH, turbidity, and total 

dissolved solids (TDS) sensors, the estimation by the ordinary 

least squares (OLS) method did not produce the best linear 

unbiased prediction (BLUP). 

There was statistical significance of the regression 

coefficients for all investigated sensors. 

Overall, the sensors showed good accuracy for water 

quality assessment, according to high performance statistics 

and adjustments classified as ‘Excellent’. 
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